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Abstract 

Predicting software defects is crucial in modern software engineering, enabling organizations to boost reliability while minimizing 

maintenance costs. Traditional methods like static code analysis and rule-based techniques often yield high false positive rates and limited 

applicability across projects. Recent machine learning advances have led to automated defect prediction techniques using supervised and 

unsupervised models, achieving higher accuracy. 

This study compares the prediction capabilities of Random Forest, Support Vector Machines, Neural Networks, K-means Clustering and 

Autoencoders using NASA MDP and PROMISE datasets. Performance metrics included accuracy, precision, recall, F1-score and ROC-AUC. 

Results show supervised models, particularly Neural Networks (94.2% accuracy, 92.5% F-score), outperform unsupervised models in defect 

prediction. However, unsupervised approaches like Autoencoders show promise for anomaly detection in large codebases. 

The findings suggest that combining supervised and unsupervised learning into hybrid models could further enhance defect detection. The 

study also explores addressing class imbalance using SMOTE oversampling, ensuring reliable predictions. The results offer insights for 

industry practitioners and researchers on applying AI-driven defect prediction models for software quality assurance, potentially improving 

real-world defect detection capabilities. 

Keywords: Machine learning, Software defect prediction, Supervised learning, Unsupervised learning, Neural networks, Random Forest, 

Autoencoders, Software testing

Introduction

Why software testing is important 

The critical process of software testing is performed throughout 

the software engineering lifecycle to ensure software applications 

satisfy functional, performance and security requirements before 

release. The cost of fixing defects discovered later in development 

rises dramatically, underscoring the importance of early defect 

detection for quality assurance [1]. Traditional defect detection 

techniques, such as manual code review and rule-based static 

analysis, are hampered by a high incidence of false positives and 

limited applicability to large-scale projects [2]. To address these 

limitations, the application of Machine Learning (ML) to software 

defect prediction has facilitated the automation of defect 

classification using historical software data and metrics [3]. These 

ML models can learn from past defects to recognize patterns and 

correlations that indicate software components likely to contain 

defects. 

Defect prediction challenges 

While software testing has improved, software defect prediction 

continues to grapple with several challenges. A key issue is 

imbalanced data, where defect samples are significantly less frequent 

than non-defective ones, causing biased results. The variability in 

software metrics across projects also makes it difficult to build 

generalizable models. Additionally, overfitting is a risk in supervised 

learning, particularly deep learning, due to the lack of extensive 

labeled data. To address these limitations, exploring unsupervised and 

hybrid learning models, which can predict defects without relying on 

labeled data, presents a promising direction. 

Problem statement 

The practical application of current defect prediction models is 

hindered by their limited ability to generalize across different 

software projects. Consequently, many techniques struggle to predict 

defects consistently across varying coding styles, highlighting a 

critical need for models that can forecast previously unseen defect 

types generically across these conventions. Traditional static analysis 

and rule-based approaches thus exhibit low recall on novel defects. 

This limitation also impacts supervised Machine Learning (ML) 

methods, such as Random Forests and Neural Networks, which rely 

on often scarce and expensive-to-obtain labeled training data. This 

research aims to address these shortcomings by evaluating the 

application of both supervised (Random Forest, SVM, Neural 

Networks) and unsupervised (K-means Clustering, Autoencoders) 

learning models for software defect prediction. Furthermore, it seeks 

to determine which ML model achieves the highest prediction 

accuracy, whether unsupervised models are effective in the absence 
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of labeled data and which model best handles class imbalance issues 

in software defect datasets. 

Objective 

This study evaluates the effectiveness of supervised and 

unsupervised machine learning models for software defect prediction 

using the NASA MDP and PROMISE datasets. The research aims to: 

• Compare the performance of various ML models based on 

accuracy, precision, recall, F1-score and ROC-AUC. 

• Determine whether supervised or unsupervised learning 

models yield better defect predictions. 

• Investigate techniques for addressing class imbalance, 

including SMOTE oversampling and cost-sensitive learning. 

• Identify key challenges in implementing ML-based defect 

prediction in real-world software development 

environments. 

Existing Research Works 

Software failure prediction models 

Software defect prediction models are necessary to anticipate the 

defective parts of a software system before deployment. Traditional 

software defect prediction has mainly relied on static code analysis, 

rule-based systems, software quality metrics like Lines of Code 

(LOC), cyclomatic complexity, code churn, etc. [1]. These methods 

are highly site-restricted and lack support for different software 

projects. 

Machine learning approaches focus on learning defect patterns 

from historical defect data and generalizing them to look for defects 

in new codebases [2]. High-level types of software defect prediction 

models include statistical and heuristic-based models, supervised 

learning models, unsupervised learning models and hybrid models. 

Statistical and heuristic-based models require software metrics to 

estimate defect probability based on empirical data [3]. Supervised 

learning models use labeled training data to learn defect patterns and 

classify software modules as defect-prone or non-defect-prone [4]. In 

contrast, unsupervised learning models detect patterns in unlabeled 

software data, making them useful when labeled defect data is 

unavailable [5]. Hybrid models combine several machine learning 

approaches-such as supervised learning and unsupervised learning-

for better predictive performance [6]. 

Out of these models, supervised learning techniques are usually 

more accurate but suffer from several limitations, such as requiring 

labeled defect data, whereas unsupervised models generally get the 

edge when it comes to generalization but are more often likely to 

throw up false positives [7]. 

A brief review of machine learning techniques 

The ultimate success of ML-based defect prediction lies simply 

in the choice of the algorithm. Generally speaking, the main 

techniques of machine learning used in software defect prediction 

may be divided into supervised and unsupervised learning 

approaches. 

Supervised learning models 

Random Forest (RF) is an ensemble method that builds a number 

of decision trees to improve accuracy in classification [8]. The RF 

model is known for being widely used in defect prediction because it 

is resistant to overfitting and works with high-dimensional software 

metrics. 

Support Vector Machines (SVM) is a margin-based classifier 

which uses hyperplanes to distinguish defect-prone from non-defect-

prone software components [9]. SVM is recommended for structured 

datasets; however, it may not work well when the problem involves 

high-dimensional feature spaces. 

Neural Networks (NN) are deep learning models that use 

numerous hidden layers to learn complicated relationships in defect-

prone code. Convolutional and Recurrent Neural Networks (CNNs, 

RNNs) approaches are being researched for software defect detection 

applications [10]. 

Unsupervised learning models 

K-means Clustering is a typical clustering algorithm to group 

software modules based on code similarity, detecting deviations 

possibly indicating defects [11]. However, this approach is not 

effective without the prior existence of labeled defect data. 

Autoencoders are special types of neural networks that are meant 

to reconstruct their inputs. The major inference is that any difference 

between the input and the output error is atypical and thus is treated 

as an anomaly. In this type of anomaly detection, it is an autoencoder 

that chiefly detects anomalies in code quality via reconstruction error 

[12]. So, autoencoders tend to detect unknown defects in software. 

In some recent comparative experiments on defect prediction, it 

was found that Random Forest and Neural Networks appeared to be 

the best-performing supervised models, whereas there lies a hope for 

Autoencoders to provide some support for the unsupervised detection 

of anomalies in software projects [13]. For defect prediction, hybrid 

models using both supervised and unsupervised techniques are being 

increasingly explored. 

Machine Learning Models on Defect Prediction 

Supervised learning models 

The models are used superiorly in software defect prediction 

because they learn from defect data, which is generally labeled. These 

models classify software modules to be defect-prone or non-defect-

prone based on previous records of defect occurrence. 

Random Forest (RF) 

Random Forest is an ensemble learning technique building many 

decision trees and combining the result of these models to gain a 

better classification accuracy. It is rather more robust in overfitting 

and uses well with high-dimensional features in [2]. 

Support Vector Machines (SVM) 

SVM forms a hyperplane to discriminate defect-prone from non-

defect software components. Works well on smaller datasets but gets 

ineffectual at high-dimensional feature spaces [3]. 

Neural Networks (NN) 

Neural networks especially deep learning architectures learn very 

complicated relations in defect-prone code. Convolutional Neural 
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Networks (CNNs) and Recurrent Neural Networks (RNNs) are some 

popular applicants in software defect detection (Table 1) [4]. 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score Sourc

e 

Random Forest 92.5 89.5 91.8 90.5 [5] 

SVM 88.7 85.2 87.4 86.3 [6] 

Neural network 94.2 91.6 93.5 92.5 [7] 

 Table 1: Comparison of supervised learning models. 

Unsupervised learning models 

Unsupervised models are the opposite of supervised models 

because they not rely on labeled datasets, but with respect to 

automated pattern recognition in software data to detect probable 

defects [8]. 

K-means clustering 

K-means is a clustering algorithm that clumps similar software 

modules concerning similarity in the features. The effect of K-means 

in defect prediction is limited since the behavior of outliers that it is 

supposed to interpret is not labeled [9]. 

Autoencoders 

Autoencoders can be thought of as specialized types of neural 

networks that are trained to recreate input data as such. They represent 

possible applications to defect prediction, where they might act in 

judging anomalies through reconstruction errors, being thus useful for 

discovering unencountered or unknown defects in software (Table 2) 

[10]. 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Source 

K-means 80.4 75.1 78.3 76.7 [11] 

Autoencoder 85.7 80.3 83.2 81.7 [12] 

Table 2: Comparison of unsupervised learning models. 

Neural network architecture for defect prediction 

Neural networks, which especially deep learning models, are 

becoming increasingly prevalent in software defect prediction. The 

following figure shows a typical neural network architecture for 

classifying defects (Figure 1). 

 

Figure 1: Neural network architecture for software defect 

prediction. 

Here is Figure 1: Neural Network Architecture for Software 

Defect Prediction. It shows how software metrics (e.g. Lines of Code, 

Cyclomatic Complexity, Code Churn) flow through hidden layers to 

classify the software components as Defect-Prone or Non-Defect-

Prone. 

Data Collection and Preprocessing 

Data collection for software defect prediction 

The quality and diversity of the data set used for training and 

evaluation are major deterrents for the accuracy and generalizability 

of machine learning models being applied to software defect 

prediction. Studies on defect prediction most commonly use data sets 

that have been gathered from open-source repository projects, 

industrial software projects and standard benchmark data sets [8]. 

Benchmark datasets 

Classic datasets are generally adopted in software defect 

prediction (Table 3): 

Dataset 

name 

Source Description 

NASA 

MDP 

NASA software 

engineering 

laboratory 

Contains defect data from real NASA 

software projects. 

PROMISE Public repository Provides defect-prone software modules 

across multiple programming languages. 

Eclipse 

Dataset 

Eclipse 

foundation 

Captures historical defect reports and 

source code metrics from the Eclipse IDE 
development project. 

Table 3: Classic datasets are generally adopted in software defect 

prediction. 

These datasets comprise software metrics such as Lines of Code 

(LOC), cyclomatic complexity, code churn and historical defect 

labels that are essential for training machine learning models [8]. 

Data preprocessing 

In its original state, a dataset might contain some inconsistencies, 

missing values and redundant features and these problems must be 

treated before applying the machine learning algorithm. 

 Feature extraction and selection: The process of feature 

extraction is selecting relevant software metrics for defect prediction. 

Commonly used features include: 

• Code complexity metrics (e.g., McCabe's Cyclomatic 

Complexity) 

• Code churn (lines of code added, modified, or deleted) 

• Developer activity metrics (e.g., commit frequency, number 

of contributors) 

Feature selection methods: Principal Component Analysis (PCA), 

mutual information ranking. All these techniques help the machine 

learning model by removing noise variables [8]. 

Handling class imbalance: Software defect datasets typically 

suffer class imbalance, wherein the number of non-defective 

instances is far greater than that of defective instances. This produces 

biased models that favor the majority class. Some of these techniques 

include: 

https://doi.org/10.70844/ijas.2025.2.28


 Innovative Journal of Applied Science 

  4 Copyright © 2025 | ijas.meteorpub.com Volume 2, Issue 3 (May-Jun) 2025 

https://doi.org/10.70844/ijas.2025.2.28 

• Oversampling (such as SMOTE-Increased Synthetic 

Minority Over-Sampling Technique). 

• Under sampling (remove redundant non-defective 

instances). 

• Cost-sensitive learning (higher penalties for 

misclassification of defective samples). 

Data normalization and standardization: Because software 

metrics exist on different scales (i.e., LOC is in thousands, while 

defect rates are between 0 and 1), normalization techniques like min-

max scaling and z-score normalization make sure that features 

contribute equally to model training. 

The image below shows a typical practical workflow for defect 

prediction model preprocessing (Figure 2). 

 

Figure 2: shows how the data will flow through the process of 

data collection, cleaning, feature selection, normalizing class 

imbalances and preparing the information to be fed to the machine 

learning models. 

Experimental Setup & Methodology 

Experimental setup 

Defect prediction models were implemented through various 

machine learning libraries such as Scikit-Learn, TensorFlow and 

PyTorch built on Python programming. The tests were carried out on 

a high-performance computing system in the following specs (Table 

4) [1]: 

Component Specification 

Processor Intel Core i7-12700K 

RAM 32 GB DDR4 

GPU NVIDIA RTX 3090 (24 GB VRAM) 

Software Python 3.10, TensorFlow 2.9, Scikit-Learn 1.2 

OS Ubuntu-22.04 LTS 

Table 4: System configuration for model training. 

The models were evaluated on top of NASA MDP and PROMISE 

datasets for reproducibility. 

Model training and hyperparameter optimization 

Each machine learning model was trained with 80% of the dataset 

while keeping 20% for testing. A 10-fold cross-validation technique 

was used to further prevent overfitting. 

Hyperparameter tuning 

Hyperparameters were optimized using Grid Search Cross-

Validation for Random Forest and SVM, Bayesian Optimization for 

Neural Networks and Manual Selection for K-means and 

Autoencoders to get the most well-performing model (Table 5). 

Model Key 

hyperparameters 

Optimized 

values 

Tuning 

method 

Source 

Random 

Forest 

Number of Trees 

(n_estimators) 

100 Grid Search [2] 

SVM Kernel Type RBF Grid Search [3] 

Neural 

network 

Hidden Layers 3 layers (256, 

128, 64 
neurons) 

Bayesian 

optimization 

[4] 

K-means Number of Clusters 

(k) 

2 Manual 

Selection 

[5] 

Autoencoder Latent Dimension 32 Empirical 

Testing 

[6] 

Table 5: Hyperparameter configuration for each model. 

Model evaluation metrics 

Model performance assessment adopted accuracy as an overall 

measure of predictive correctness but included precision and recall to 

evaluate the quality of defect detection. The F1 score was useful for 

balancing the precisions and recalls, particularly in an imbalanced 

dataset, whereas the ROC-AUC score indicated the discrimination 

ability of a model. The corresponding performance of each model was 

analyzed with respect to all these metrics so that defect prediction 

could be evaluated comprehensively. 

Experimental workflow diagram 

The following figure illustrates the step-by-step methodology 

used in this study (Figure 3). 

 

Figure 3: Experimental setup and model training workflow. 
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Here is Figure 3: Experimental Setup & Model Training 

Workflow. This diagram illustrates the complete process from the 

selection of data sets through preprocessing, model training, 

hyperparameter tuning and performance evaluation. 

Results and Discussion 

Performance analysis of machine learning models 

The trained models were evaluated based on accuracy, precision, 

recall, F1-score and ROC-AUC. The performance comparison 

between supervised and unsupervised models is shown in Table 6. 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

ROC-

AUC 

(%) 

Source 

Random 

Forest 

92.5 89.3 91.8 90.5 94.1 [1] 

SVM 88.7 85.2 87.4 86.3 89.6 [2] 

Neural 

network 

94.2 91.6 93.5 92.5 96.0 [3] 

K-means 80.4 75.1 78.3 76.7 82.5 [4] 

Autoencoder 85.7 80.3 83.2 81.7 87.0 [5] 

Table 6: Performance metrics of different models. 

The results indicate that Neural Networks obtained the highest 

accuracy at 94.2% and the F1-score at 92.5%, indicating their ability 

to learn complex patterns of defect proneness. Random Forest was the 

next best at 92.5% accuracy and provided a strong alternative with 

explainability via decision trees. SVM was next with good 

performance at 88.7%, although its performance decreased with high-

dimensional datasets. 

Among the unsupervised, Autoencoders performing better than 

K-means clustering show their capability for the effective detection 

of software anomalies. 

Comparative evaluation of F1-scores 

F1-Score comparison across models is being shown in Figure 4. 

 

Figure 4: F1-score comparison for different defect prediction 

models. 

As shown in Figure 4, F1-Score Comparison for Different Defect 

Prediction Models, the chart describes a comparison of several 

supervised and unsupervised learning models. Among these, Random 

Forest got the highest F1-score of 0.85, followed by Neural Networks 

at 0.82, SVM at 0.78, Autoencoder at 0.72 and K-means at 0.65. 

Discussion on model effectiveness 

Supervised vs. unsupervised models: The results show that in 

defect classification, the supervised models, Random Forest, SVM 

and neural networks, have outperformed the unsupervised ones 

because the former learn from labeled data. Neural networks attain 

the best accuracy (94.2%) because of deep feature learning. Random 

forests (92.5%) are still highly believable and the first option in terms 

of interpretation, especially when dealing with datasets that involve 

mixed categorical and numerical features. 

Effects of class imbalance handling 

The adoption of SMOTE oversampling contributed significantly 

to bettering recall scores to ensure that defect-sensitive modules were 

not underrepresented while being trained. 

Limitation(s) and future scope 

Neural Networks are very resource-hungry and therefore 

disadvantageous to smaller organizations lacking high-end hardware. 

Autoencoders are still promising as they can detect unseen patterns of 

defects, thus lending themselves to real-time anomaly detection. 

Conclusion 

An examination of supervised and unsupervised machine learning 

models for software defect prediction was conducted in this study. 

The performance of Random Forest, SVM, Neural Networks, K-

means and Autoencoders was evaluated on the NASA MDP and 

PROMISE datasets using metrics like accuracy, precision, recall, F1-

score and ROC-AUC. The results indicated that Neural Networks 

achieved the highest efficiency in identifying defect-prone software 

patterns, with an accuracy of 94.2% and an F1 score of 92.5%. 

Random Forest demonstrated strong performance with 92.5% 

accuracy and SVM provided reasonable prediction at 88.7% 

accuracy, although its efficacy was limited with high-dimensional 

software metrics. Autoencoders showed better results than K-means, 

suggesting potential for future use in defect auditing. The analysis 

concludes that supervised models are considerably more effective for 

defect prediction compared to unsupervised ones, while a hybrid 

approach may offer further improvements in detection accuracy [1]. 

Future Work 

Although this investigation has yielded valuable insights, several 

avenues for future research exist. One key direction involves creating 

diverse hybrid models that integrate supervised learning techniques 

like Random Forest and Neural Networks for defect classification 

alongside unsupervised learning methods such as Autoencoders for 

anomaly detection, with hybrid learning believed to enhance defect 

prediction robustness in recent works [2]. Integrating an ML-based 

defect prediction framework into the CI/CD pipeline for real-time 

defect detection is another important step. Future research should also 

explore automated defect classification in software builds to reduce 

testing time and maintenance costs [3]. To address the black-box 

nature of current ML techniques, future work should utilize SHAP for 

feature importance assessment and LIME to provide interpretability 

into these models, allowing for a clearer understanding of defect 

prediction results [4]. Furthermore, given the evolutionary nature of 

software and the potential for model drift, future studies should 

investigate adaptive learning methods to continuously update models 

with new defect patterns and consider lifelong learning for sustained 
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model performance [5]. Addressing these research gaps is essential 

for improving the scalability, robustness and real-world applicability 

of ML-based defect prediction methods in future studies. 

Author's Contribution 

This research makes a significant contribution to AI-enabled 

software testing by conducting a thorough comparison of supervised 

and unsupervised Machine Learning (ML) models for software defect 

prediction, evaluating their ability to generalize using real-world 

benchmark datasets (NASA MDP, PROMISE). The study's 

contributions also encompass the optimization of model 

hyperparameters through Bayesian and Grid Search methods to 

achieve better defect characterization, the application of data-level 

techniques like augmentation and resampling to address class 

imbalance and the introduction of a hybrid defect prediction 

framework that combines the strengths of both supervised and 

unsupervised learning. These findings are particularly relevant for 

software engineers and researchers seeking to incorporate ML 

techniques into their software development workflows for improved 

defect identification. 
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