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Abstract 

In this paper, a kinetic model for the reduction process by solid carbon of MnO in high-carbon ferromanganese slags using Fractional 

Differential Equations (FDE) was developed, the relationship between fractional order, fractional rate constant and temperature was determined 

and the accuracy of the fractional order model was verified. The fractional order q is 0.892, 0.808 and 0.522, at 1,450 ℃, 1,500 ℃ and 1,600 

℃ respectively and the fractional rate constant kq 1.176E-03, 2.856E-03 and 3.477E-02. A linear relationship exists between the fractional 

order and the temperature and an exponential relationship exists with the fractional rate constant. Comparing the conversion factors calculated 

from the FDE and previous model with the experimental values, the RMSE were 0.005 and 0.029, respectively and the r2 0.999 and 0.980. 

This means the FDE model is more accurate. The apparent activation energy of the MnO reduction process calculated using the model was 

181.1 kJ/mol. 

Keywords: Fractional Differential Equation (FDE), Fractional rate constant, MnO reduction, Kinetics, Conversion factor

Introduction 

Manganese is an important alloying element indispensable in the 

metallurgical industry and it is widely deposited in the form of oxides 

in nature. The studies on the reduction reaction of manganese oxides 

in the production of metallic manganese or ferromanganese from 

these manganese raw materials are of great importance and 

thermodynamic and kinetic studies on the reduction reaction of 

manganese oxides have been carried out by many researchers [1-3]. 

In particular, several kinetic models describing the carbothermic 

reduction reaction of MnO proposed and experimentally examined 

[4,5]. The reduction of MnO by solid carbon is represented by the 

following reactions. 

(MnO)+C=Mn+CO(g)                                                            (1) 

Shibata E, et al., evaluates the reduction rate of MnO in CaO-

SiO2-CaF2-MnO-FeO slags and suggests that the reaction is rate-

controlled by mass transfer in the metallic phase [6]. In Rankin WJ, 

et al., considered solid carbon as a porous material and performed a 

kinetic study of manganese oxide reduction reaction, revealing that 

the rate-limiting step of the reaction is the diffusion-transfer step of 

the gas to the reaction zone [7]. In addition, Berg KL, et al., 

considered the reduction reaction of MnO in the temperature range of 

700~1,100 oC and considered that the reaction was controlled by 

diffusion outside the reaction zone of the product [8]. Jamieson BJ, et 

al., studied the reduction reaction of MnO in MnO-SiO2-CaO-Al2O3-

based slag by FeSi and reported that the reaction was controlled by 

the migration of Si in the metal phase and the migration of MnO in 

the slag phase [9]. In Safarian J, et al., carried out kinetic research and 

proposed a kinetic model for the reduction reaction by solid carbon 

of MnO in high-carbon ferromanganese slag [4]. The apparent 

activation energy of the reduction reaction of MnO calculated by this 

is 227.7kJ/mol. 

However, there are some errors in the calculation and 

experimental results in the models proposed by the previous authors 

and no studies have yet applied the fractional order in the kinetic 

modeling of the reduction reaction of MnO by solid carbon. 

Accurate description of the rate at which a chemical reaction takes 

place is a fundamental task of chemical kinetics. Many researchers 

have been interested in developing accurate mathematical models to 

describe chemical kinetics. Most of them have used differential 

equations of integer order for mathematical modeling of chemical 

reactions. In general, however, real objects can be considered as 

systems of fractional order (0.8, 0.9...), even though in some systems 

the differential order is very close to the integer order (first order, 

second order). In recent years, fractional kinematics theory has been 

widely used to describe phenomena in control theory, electrochemical 

processes, viscoelastic materials, heat conduction and chaos [10-20]. 

In particular, in the last few decades, modeling methods of chemical 

reactions using fractional-order operators have continued to be 

generalized and developed. Ghaemi F, et al., developed a fractional 
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kinetic equation model to predict the concentration of xylose with 

time in the hemicellulose hydrolysis reaction to increase the 

computational accuracy and an example of this can be found in a 

study using the fractional calculation method for the flotation process 

in Vinnett L, et al., [21,22]. 

In this paper, the kinetic research of the reduction reaction of 

MnO in high-carbon ferromanganese slags by solid carbon were 

carried out using fractional differential equations, the fractional order 

and fractional order were calculated, the fractional order and 

temperature dependence of the rate constant were determined and the 

apparent activation energy was calculated. 

FDE Modeling 

Model developing 

Under the assumption that the rate-limiting step of the reaction is 

the interaction between reactants at the interface, Safarian et al. 

proposed the following differential equation for kinetically 

considering the reduction reaction of MnO in high-carbon 

ferromanganese slag by solid carbon [8]. 

MnO t
m

MnO s

dC A
k dt

C V
− =                                         (2) 

where, CMnO- the concentration of MnO in the slag phase, %; γ-

reaction order VS-slag volume, m3; At- the total reaction interfacial 

area, m2; km-mass transfer coefficient m/s. 

Eq. (2) is the basic differential equation representing the 

carbothermic reduction of MnO in a graphite crucible. However, 

since the ratio of the area of the interface to the slag volume, At/Vs 

depends on the slag density and CMnO and it is not the first-order 

variable separation equation. In the general case, it has to be solved 

numerically for various initial and boundary conditions. However, 

since the At/Vs ratio did not change significantly during the 

isothermal reduction, Eq. (2) could be considered as the first-order 

variable separation equation. 

According to Safarian et al., the experimental data for the 

reference system are best represented by the first-order reaction (γ=1), 

so Eq. (2) is represented by Eq. (3) [8]. 

 

MnO t
m

MnO s

dC A
k dt

C V
− =

                                             (3) 

Safarian J, et al., the authors calculated the MnO concentration 

with time using the proposed model and compared the experimental 

values with a significant error [4]. In order to overcome this 

shortcoming, a modeling method using FDE is proposed. 

If we set k as the rate constant of the reaction and perform the 

variable transformation using the conversion factor (α), Eq. (3) is as 

follows. 

0

0

MnO

eq

MnO MnO

Cd
k

dt C C




 
=  − 

− 

                                            (4) 

Where t
m

s

A
k k

V
= , 

0

0

MnO MnO

eq

MnO MnO

C C

C C


−
=

−
 

By replacing the first derivative with the fractional derivative of 

Caputo, the fractional differential equation (5) is obtained from the 

first derivative equation (4). 

0

0
( )

q
c q MnO

qq eq

MnO MnO

Cd
D t k

dt C C


 

 
= =  − 

−                                (5) 

α(0)=0, 0<q<1 

where q-fractional order; kq-fractional rate constant. 

Substituting 𝐶𝑀𝑛𝑂
0 = 45% and 𝐶𝑀𝑛𝑂

∞ = 𝐶𝑀𝑛𝑂
𝑒𝑞

= 15% for Eq. (5), 

we could obtain the fractional differential Eq. (6). 

( )( ) 1.5
q

c q

qq

d
D t k

dt


 = =  −

                                          (6) 

α(0)=0, 0<q<1 

Hence, we can calculate the rate of conversion with time as a 

solution of the linear fractional differential Eq. (6). 

Solution of FDE 

One of the most common fractional differential operators used in 

the scientific and technological fields is the Caputo Fractional 

Derivative (CFD). That is, 

1 ( )1
( ) ( ) ( )

( )

t
C q n q n

a t
a

D x t t x d
n q

  − −=  −
 −

                       (7) 

where n means [q]+1 (n is the smallest integer bigger than q) and 

Γ is the gamma function. That is, 

1

0

( ) z tz t e dt



− − =   , z>0                                                        (8) 

Let us first consider the following Eq. (9), 

𝑎1𝑥𝑞(𝑡) + 𝑎0𝑥(𝑡) = 1                                                              (9) 

x(0)=0 

where a0, a1 are arbitrary constants. 

An analytical solution to the Eq. (9) is presented in 23.

 Podlubny I and Podlubny I [23,24]. If q=1, the solution is 

represented by an exponential function (Eq. (10)) and if q≠1, by a 

Mittag-Leffler expression (Eq. (11)). 

( )
0

1

0

1
1

a
t

a
x t e

a

− 
= − 

 
                                                       (10) 

( ) 0
, 1

1 1

1 q q

q q

a
x t t E t

a a
+

 
= − 

                                                   (11) 
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Where 𝐸𝛼,𝛽(𝑧) is a function of Mittag-Leffler with two 

parameters. 

( )
( )

,

0

k

k

z
E z

k
 

 



=

=
 +


                                    (12) 

In our case, 𝑎1 =
1

1.5⋅𝑘𝑞
, 𝑎0 =

1

1.5
, so the basic fractional 

differential equation (6) can be written as: 

𝛼(𝑡) = 1.5. 𝑘𝑞 . 𝑡𝑞 . 𝐸𝑞,𝑞 + 1 (−𝑘𝑞𝑡𝑞)                                 (13) 

Once q and kq are given, we can find the relationship between 

conversion factor α and t from Eq. (13). 

Estimation of parameters 

Estimation of the fractional order and fractional rate constants in 

the FDE model was determined by iterative calculation using Matlab 

software, until the sum of the squares of the calculated and 

experimental errors (Eq. (14)) was less than 0.005. 

( ) ( )( )
2

,

1

, ( ) ( )
N

cal q obs

i

S q k t i t i 
=

= −                         (14) 

Where 𝛼𝑐𝑎𝑙 is calculated as the solution (Eq. (13)), 𝛼𝑜𝑏𝑠 is the 

observed value during the experiment and N is the number of 

observed values. 

For the calculation of the Mittag-Leffler function, the Mittag-

Leffler procedure and the Matlab nonlinear least squares regression 

analysis (nlinfit command) were used. 

We used the Root-Mean-Square Error (RMSE) and the 

coefficient of determination (r2) as indicators to evaluate the accuracy 

of the model. These indices are calculated by the following equation. 

( )
2

, ,1

N

cal i obs iiRMSE
N

 
=

−
=


                                (15) 
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( )

2
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2

,

1

1

N
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i

N
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r

 

 

=

=

−

= −

−





                                 (16) 

Where 𝛼𝑜𝑏𝑠 , i is the ith experimental value, 𝛼𝑐𝑎𝑙 , i the ith 

predicted value and 𝛼𝑜𝑏𝑠 the algebraic mean of the experimental 

values. 

Validation and Discussion of the FDE model 

Validation of the FDE model 

In the validation of the model, the experimental data presented in 

Safarian J, et al., were used [4]. The fractional order and fractional 

order constants with temperature determined using the estimation 

method mentioned above are shown in Table 1 and Figure 1. 

Temperature, °C 1,450 1,500 1,600 

q 0.892 0.808 0.522 

kq 1.18E-03 2.86E-03 3.48E-02 

Table 1: The parameters of the fractional model. 

 

Figure 1: Relationship between the temperature T and fractional 

derivative order q. 

It can be seen from Table 1 and Figure 1 that as the temperature 

increases, the order of the fractional derivative decreases linearly. In 

other words, it can be seen that the more pronounced the fractional 

mechanical properties are as the temperature increases. 

On the other hand, the comparison of the FDE model calculations 

with the experimental data with the model proposed in Safarian J, et 

al., is shown in Figure 2, Figure 3 also shows the comparison between 

the predicted and experimental MnO concentrations calculated from 

the model at different temperatures [4]. 

From Figure 2 and Figure 3, it can be seen that the FDE model is 

more accurate because the calculation results using the FDE model 

are more approximate to the experimental results compared to the 

model proposed in Safarian J, et al., [4]. 

  

Figure 2: Relationship between conversion value and time. 
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Figure 3: Relationship between MnO concentration and time. 

In order to quantitatively compare the accuracy of the FDE model 

compared to the model proposed in Safarian J, et al., the RMSE and 

r² calculated results are presented in Table 2 [4]. 

    1,450 1,500 1,600 average 

RMSE 

Safarian J, et 

al., 0.005 8 0.015 9 0.065 4 0.029 0 

fractional 

model 0.003 6 0.003 4 0.007 0 0.004 7 

r² 

Safarian J, et 

al., 0.999 2 0.995 6 0.946 3 0.980 4 

fractional 

model 0.999 7 0.999 8 0.999 4 0.999 6 

Table 2: Accuracy comparison between Safarian J, et al., and 

fractional model [4]. 

From Table 2, it can be seen that the FDE model is more accurate 

compared to the model proposed in Safarian J, et al., [4]. 

The higher accuracy of the FDE model can be attributed to the 

fact that the model proposed in Safarian J, et al., has one parameter, 

whereas the FDE model has two parameters, fractional derivative 

order and fractional order constant. 

Fractional rate constant equation 

In order to consider the relationship between the fractional order 

and the temperature, the fractional order and the fractional order 

coefficient along the fractional order at different temperatures were 

calculated and the results are shown in Figure 4. 

 

Figure 4: Fractional differential order with Fractional order and 

temperature. 

From the calculated values of the fractional rate constant with 

temperature and fractional order of Figure 4, the relationship between 

fractional order q and ln kq at constant temperature is shown in Figure 

5. 

 

Figure 5: Relationship between q and ln kq. 

As can be seen from Figure 5, there exists a clear linear 

relationship between q and ln kq and the lines are almost parallel. This 

means an exponential relationship between q and kq when the 

temperature is constant. 

 q

qk e                                                                        (17) 

where λ is the regression coefficient of the q-lnkq line. 

On the other hand, using the data in Figure 4, the relationship 

between the fractional conductivity constant and temperature was 

considered. 

Generally, temperature dependence of the first order rate constant 

is usually expressed by the Arrhenius equation [25,26]. 

ln ln aE
k A

RT
= −                                                     (18) 

where A is the exponential factor, R is the apparent activation 

energy, R is the gas constant and T is the absolute temperature. 

The apparent activation energy, Ea can be obtained by a linear 

plot of lnk versus 1/T according to the Arrhenius equation. In the 

small temperature range where kinetic studies are carried out, it is 

reasonable to treat the activation energy as an approximate quantity 

independent of the temperature when the graph is linear [27,28].  

And then, in order to clarify whether the fractional rate constant 

satisfies the Arrhenius equation as the first order rate constant, we 

analyzed the relationship between lnkq and 1/T (Figure 6). 

 

Figure 6: Relationship between lnkq and 1/T. 
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It can be seen from the figure that a linear relationship between lnkq 

and 1/T can be established. 

 
c

T
qk e

−

  , 0c                                                             (19) 

where c is the direction coefficient of lnkq - 1/T plot as a constant. 

Taking into account Eq. (17) and Eq. (19), we assumed the structure 

of the fractional rate constant equation as follows. 

aE

q RT
qk A e e

−

=                                                                       (20) 

The estimated parameters of Eq. (20) using nonlinear regression 

analysis method of the Matlab software are presented in Table 3. 

Parameters 𝐴  𝜆 𝐸𝑎, kJ/mol 

Values 1,19,645.20 -6.557 181.107 

Table 3: Parameters of fractional continuation scheme. 

Hence, Eq. (20) can be written as: 

181,107 181,107
6.557

6.557119,645.2 119,645.2
q

q RT RT
qk e e e

− − −
−=   =      (21) 

Conclusion 

Using the FDE, a kinetic model for the MnO reduction reaction 

in high-carbon ferromanganese slag by solid carbon is proposed, the 

relationship between fractional order, fractional order, fractional 

order constant and temperature is analyzed and the accuracy of the 

new model is compared with the results of previous studies. 

The values of conversion and MnO concentration in slag with 

time calculated by the proposed model are in good agreement with 

the experimental values. 

The relationship between the fractional derivative order, the 

fractional rate constant and the temperature is clarified and a new 

fractional rate constant equation is proposed. 

In the proposed model, the apparent activation energy of the 

reduction reaction was about 181.1 kJ/mol. 

The results of the study can serve as a basis for rationalizing the 

high-carbon ferromanganese dissolution process, although the 

model's validation temperature range is limited to the range of 1,450-

1,600 ℃. In the future, we will develop a more accurate model that 

can accurately simulate the high-carbon ferromanganese dissolution 

process in different temperature ranges and further work for practical 

applications. 
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