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Abstract 

This study proposes an automated system for detecting and classifying defects in products manufactured through the injection molding 

process. Existing deep learning-based detection technologies provide high accuracy, but have limitations in that they require massive data and 

complex learning processes, and require re-learning when new products are introduced. On the other hand, simple image processing techniques 

can be applied quickly without a learning process, but there are limits to accuracy when defect types are complex or diverse. To solve this 

problem, this study introduced advanced computer vision technology to overcome the limitations of existing technology and designed a system 

that excludes the complexity of deep learning. In particular, this system combines various pre-processing and post-processing techniques such 

as grayscale conversion, binarization, Gaussian filtering, and histogram smoothing to simultaneously improve the accuracy and efficiency of 

defect detection. In addition, it was designed to quickly detect defects occurring in the manufacturing process through a system architecture 

that optimizes real-time processing. Using ultrasonic sensors and automated conveyor belts, the product movement and detection process is 

precisely controlled, enabling real-time data processing and product classification. As a result of the experiment, this system significantly 

reduced detection delays and classification errors that commonly occurred in existing research, and demonstrated its potential to contribute to 

quality control and productivity improvement in a manufacturing environment. 
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Introduction 

Products manufactured through the injection molding process are 

widely utilized across various modern industries, including 

packaging, automotive, medical, and aerospace [1]. However, defects 

may arise during this process, which not only diminishes product 

quality but also poses serious risks to safety and corporate reputation. 

Therefore, detecting and classifying defective products during 

manufacturing is critical to maintaining quality control [2,3]. 

Currently, most manufacturers rely on visual inspections or existing 

automated systems for defect detection [4]. However, visual 

inspections are time-intensive, and their reliability can vary 

depending on the inspector's skill level and fatigue [5]. Automated 

systems, on the other hand, are often optimized for detecting specific 

defect types and struggle to address complex or diverse defects. To 

address these limitations, computer vision technology has recently 

garnered significant attention in the field of defect detection [6]. 

Computer vision involves extracting image information and 

analyzing it to identify defects in products. It circumvents the 

challenges of deep learning, which requires complex retraining 

processes whenever a new product is introduced. Furthermore, 

computer vision is easily integrable into manufacturing workflows, 

offering high-speed data processing and precise analytical 

capabilities. In particular, computer vision enables rapid and efficient 

detection of various defect types, thereby achieving both quality 

control and automation in manufacturing processes. 

This study proposes an automated system for detecting and 

classifying defects in products manufactured through the injection 

molding process. The system leverages computer vision technology 

to extract essential information from images and analyze them to 

identify the characteristics of various defect types. Specifically, this 

study aims to address the limitations of existing methodologies by 

designing a system architecture capable of real-time defect detection. 

Figure 1 illustrates the overall flow of the proposed system. First, 

injection-molded bottle caps are transported via a conveyor belt and 

inspected for defects as they pass through the image processing 

section. Ultrasonic sensors detect the products, and in the sorting 

section, bottle caps are classified into good and defective products. 

 

Figure 1: This image is a diagram of the complete system for 

detecting defects in injection-molded products. 
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This paper is structured as follows: Chapter 2 reviews related 

research, Chapter 3 provides a detailed explanation of the proposed 

methodology, Chapter 4 discusses the experimental results, and 

Chapter 5 presents the conclusions and future research directions. 

Related Works 

Latest trends in defect detection 

Recently, defect detection technology has emerged as a crucial 

component of the manufacturing industry, driven by rapid 

advancements in Artificial Intelligence (AI) and Machine Learning 

(ML) [7-10]. Notably, the integration of deep learning-based 

approaches and traditional computer vision techniques has enabled 

the development of more precise and real-time systems.  

First, state-of-the-art real-time object detection algorithms like 

YOLO (You Only Look Once) have significantly advanced defect 

detection. For example, YOLOv8 and YOLOv10 provide high-speed, 

high-accuracy real-time defect detection on manufacturing lines. The 

latest versions feature innovations such as training methods that 

eliminate Non-Maximum Suppression (NMS), optimizing processing 

efficiency [11,12]. These algorithms are compatible with both Central 

Processing Units (CPUs) and Graphics Processing Units (GPUs) and 

CPUs, making them versatile for various operational environments. 

Second, edge AI technology has garnered attention for its ability to 

perform real-time data analysis locally, thereby reducing latency and 

enhancing data security by eliminating the need for cloud 

transmission [13]. Additionally, model light weighting techniques, 

which reduce AI model size and improve inference speed, maintain 

high performance even in resource-constrained edge environments 

[14]. These features are particularly advantageous for high-

throughput, data-sensitive applications like defect detection in 

manufacturing. Third, deep learning techniques such as transfer 

learning deliver high performance even with limited data, enabling 

manufacturers to adapt quickly to new products or defect types 

[15,16]. Fourth, computer vision techniques, such as image 

segmentation, are employed to more accurately detect the location 

and shape of surface defects. This technology is especially vital in 

high-precision industries, including medical, electronic, and 

automotive manufacturing [17,18]. Lastly, the integration of real-time 

data analysis with automated reporting systems is becoming standard 

practice.  

These systems allow manufacturers to detect quality issues in real 

time and take proactive measures to address them, thus reducing costs 

and maximizing productivity. In summary, the latest advancements in 

defect detection technologies spanning real-time processing, 

accuracy, and scalability are transforming the manufacturing 

landscape. These innovations are pivotal in helping manufacturers 

maintain product quality and enhance their competitive edge. 

Defect detection using computer vision 

Computer vision is a core technology that plays a vital role in 

automatically detecting surface and structural defects in products 

during the manufacturing process [19]. Various defects, such as 

cracks, scratches, and dents, can occur on the product surface during 

manufacturing. Prompt and accurate detection of these defects is 

critical for manufacturers to ensure quality control and minimize cost 

losses [20]. To address this issue, high-resolution cameras and 

lighting systems are used to capture images of product surfaces. These 

images undergo a range of preprocessing steps using computer vision 

technology to enhance defect detection accuracy [21]. Typically, 

RGB images are converted to a single channel via grayscale 

conversion to improve data processing efficiency. Gaussian filtering 

is then applied to remove noise, simplifying the identification of 

defect areas [22]. A thresholding technique is used to distinguish 

defect areas clearly by converting the image into black and white 

based on pixel brightness values. The preprocessed image proceeds 

to the feature extraction stage, where critical features such as the 

defect's size, shape, and location are identified [23]. Commonly used 

feature extraction methods include edge detection algorithms, 

histogram analysis, and contour detection. Computer vision has 

distinct characteristics compared to deep learning-based approaches. 

While deep learning requires large volumes of training data and 

complex learning processes, computer vision operates without the 

need for training data, relying on predefined rules to detect defects. 

These differences greatly influence their applicability in operational 

environments. For instance, computer vision has a straightforward 

initial setup, excellent real-time processing capabilities, and is 

particularly effective in detecting standardized defect types, such as 

cracks of specific sizes or shapes [24]. In contrast, deep learning 

excels in detecting atypical and complex defects and offers the 

advantage of adapting to new defect types through model training. 

However, it also has significant drawbacks, such as its reliance on 

large datasets, complex training processes, and high initial costs and 

time requirements for implementation in manufacturing contexts. 

Given these contrasts, computer vision and deep learning have unique 

advantages and disadvantages. Therefore, it is essential to carefully 

select the appropriate technology for defect detection based on the 

specific requirements of the manufacturing environment. The 

following section provides a detailed comparison of these two 

approaches and explores the criteria for choosing the most suitable 

technology. 

Defect detection and comparison using deep learning 

Computer vision and deep learning-based defect detection 

technologies have different principles and characteristics, which 

results in differences in applicability and suitability in the 

manufacturing environment [25]. As explained earlier, computer 

vision has strengths in simple setup and real-time processing 

capabilities, and can provide an economical solution that enables 

defect detection without prior learning [21]. On the other hand, deep 

learning demonstrates powerful performance in detecting atypical 

and complex defects, and is different in that it can learn new defect 

types that have not been previously defined. Deep learning mainly 

uses models such as Convolutional Neural Networks (CNN) to 

automatically learn and classify defect characteristics based on image 

data. This technology requires a large amount of labeled training data 

and powerful computing resources, and the initial setup and training 

process take a considerable amount of time [26]. However, when 

detecting complex defect types (e.g. irregular crack patterns, surface 

color changes), deep learning offers high accuracy and flexibility. On 

the other hand, computer vision utilizes traditional image processing 

algorithms (edge detection, binarization, histogram smoothing, etc.) 

to manually extract and analyze features [25]. This method operates 

on a rule-based basis and has the flexibility to be quickly applied to 

new defect types without a complex learning process. For example, it 

is well suited for real-time detection of standardized defect types, 

such as cracks of a certain size and shape. The differences between 

the two technologies are also evident in their data requirements. Deep 

learning requires large amounts of labeled data, and data preparation 

and learning processes are key to developing a defect detection 
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system. On the other hand, computer vision does not require learning 

data, so initial setup is simple and it can operate immediately based 

on existing rules. In terms of performance, there is a clear difference 

between the two technologies. Computer vision provides high 

processing speed and real-time in routine defect detection, and is an 

economical and efficient choice for simple manufacturing processes. 

However, there may be limitations in handling complex and diverse 

defect types. On the other hand, deep learning can accurately detect 

complex defects, but has the disadvantage that the learning and re-

learning process is long and involves high computational costs [27]. 

In conclusion, computer vision is suitable in environments where 

real-time and operational efficiency are important, while deep 

learning can demonstrate its strengths in manufacturing environments 

where multivariate and complex defect detection is required. This 

study seeks to improve quality control and productivity in the 

manufacturing process by maximizing the practicality and efficiency 

of computer vision while avoiding the complexity and data 

dependence of deep learning [28]. 

Difference from this study 

This study proposes an approach that is distinct from existing 

research by utilizing computer vision technology to detect defects in 

injection-molded products. Previous studies often relied on deep 

learning-based detection techniques or simple image processing 

methods [29]. While deep learning-based approaches provide high 

accuracy, they have significant drawbacks, including the need for 

large datasets, a complex training process, and re-training 

requirements whenever new products are introduced [30]. 

Conversely, simple image processing techniques can be implemented 

quickly without a training process but exhibit limitations in accuracy 

when faced with complex or diverse defect types. This study employs 

advanced computer vision technology that addresses the limitations 

of conventional simple image processing techniques while avoiding 

the complexity of deep learning [31]. Specifically, the system 

enhances both the accuracy and efficiency of defect detection by 

incorporating various pre-processing and post-processing techniques, 

such as grayscale transformation, binarization, Gaussian filtering, and 

histogram smoothing. These techniques are designed to effectively 

detect a wide range of defect types without requiring any learning 

process. Additionally, the study introduces a system architecture 

optimized for real-time processing to promptly identify defects 

arising during the manufacturing process. Ultrasonic sensors and 

automated conveyor belts are employed to precisely control product 

movement and detection processes, enabling real-time data 

processing and product classification. As a result, this approach 

significantly reduces detection delays and classification errors 

commonly observed in previous research. 

Method and Result 

Hardware configuration for multi-product surface defect 

detection algorithm 

Figure 2 illustrates the optical design schematic for an 

environment configured to detect surface defects on injection-molded 

products. To optimize the image processing environment, blackout 

curtains were used to block external light sources, ensuring that 

reflected light from the surface of the injection-molded product 

reaches the camera uniformly. Additionally, to minimize variations in 

light intensity caused by distance differences between the light source 

and the subject, LED lights were installed at both ends of the upper 

section to evenly illuminate the surface of the subject. This system is 

designed to detect up to three products simultaneously (Figure 3). 

 

Figure 2: Optical design schematic for surface defect detection 

in injection-molded products. 

 

Figure 3: Triple product feeder system diagram. 

To ensure the efficient feeding of injection-molded products, a 

device capable of feeding three products at a time was designed. This 

device is constructed as shown in the figure, utilizing a servo motor 

and a 3D-printed structure. The servo motor alternates between 

forward and reverse rotations, automating the process of product 

feeding and refilling. As a result, three products are aligned in a single 

row and fed onto the conveyor belt. Additionally, the device is 

installed at a specific angle to prevent overturning during product 

feeding, ensuring that the products are stably placed on the conveyor 

belt even in downhill sections. 

Multi-product surface defect detection algorithm 

Figure 4 illustrates one of the image processing steps for detecting 

surface defects in multiple products. The images captured by the 

camera are provided as 3-channel RGB images, and effective defect 

detection of products moving on a conveyor belt requires high 

processing speed and accurate feature detection. To enhance 

processing efficiency, the 3-channel RGB images were converted into 

single-channel Grayscale images. This conversion significantly 

reduces computational load and shortens processing time while 

maintaining the accuracy of defect detection for products moving 

quickly on the conveyor belt. Additionally, Thresholding was applied 

to the Grayscale images to remove unnecessary background. The 

white regions in the Threshold image represent the Region of Interest 

(ROI), which corresponds to the areas of the product surface that need 

to be observed. Based on this, only the pixel data within the ROI were 

retained in the Grayscale image, while the rest of the regions were set 
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to 0, resulting in a Threshold-based Grayscale pixel extraction image 

(Figure 5). 

 

Figure 4: threshold-based grayscale pixel extraction process for 

multi-product surface defect detection. 

 

Figure 5: Flowchart of image processing for defect detection in 

threshold-based grayscale internal regions. 

This figure is a flowchart illustrating the sequential image 

processing steps undertaken to detect defects in the internal regions 

of a Threshold-based Grayscale pixel extraction image. First, a 

Gaussian filter is applied to perform blur processing, which helps 

remove unnecessary noise from the surface of injection-molded 

products. The Gaussian filter effectively reduces high-frequency 

noise, improving the accuracy of analysis and lowering 

computational costs in subsequent processing steps. This step is 

particularly critical for achieving clear analysis, even in cases where 

the defects on the product surface are subtle. 

After noise removal, Histogram Equalization is applied to balance 

the brightness distribution of the image. This process increases image 

contrast, emphasizing key features on the surface and making defect 

areas more prominent. By enhancing the visibility of defects that were 

previously difficult to identify due to low contrast, this step 

significantly improves defect detection sensitivity. 

Next, the Canny Edge Detection algorithm is employed to 

identify regions with significant changes in intensity and extract their 

contours. Canny Edge Detection is particularly effective at detecting 

areas with strong gradient changes, which often correspond to 

defects. This enables clear differentiation between defective regions 

and background areas, resulting in more precise defect detection. 

Finally, the Threshold image generated in a previous step is 

inverted and combined with the extracted edges using a Bitwise AND 

operation to isolate and extract the defect regions. By inverting the 

Threshold image, non-target background areas are eliminated, and the 

Bitwise AND operation ensures that defect detection is restricted to 

the Region of Interest (ROI). This approach minimizes false positives 

caused by background interference and allows for accurate defect 

detection within the ROI (Figure 6 and Figure 7). 

 

Figure 6: Example image for determining the quality status of 

injection-molded products. 

 

Figure 7: 3x3 multi-product surface defect detection and 

classification results. 

This figure illustrates the results of 3x3 multi-product surface 

defect detection and classification. The left panel shows the original 

images of nine injection-molded products, providing an overview of 

the surface condition of each product prior to analysis. The middle 

panel displays the results after applying the defect detection 

algorithm, highlighting the detected closed curves on the product 

surfaces. Each closed curve is color-coded to indicate the product's 

status: Green boxes represent products with cracks, while yellow 

boxes indicate products with defects such as sink marks. 

To evaluate the performance of the previously described 

algorithm, an experiment was conducted using a total of 100 products. 

The experiment included 50 normal products, 25 products with 

cracks, and 25 products with sink marks. Each product was placed 

into the input section, and its classification was verified in the sorting 

section. The experimental results are presented in Table 1, and the 

confusion matrix was used to assess the classification accuracy of the 

algorithm. As shown in Table 1, the algorithm achieved 48 True 

Positives, 47 True Negatives, 2 False Negatives, and 3 False 

Positives. Based on these results, the overall accuracy was calculated 

to be 95%, demonstrating the high reliability and efficiency of the 

algorithm in detecting and classifying defects in injection-molded 

products. 

 Predictive values 

Positive (1)  

Actual 

values 

Positive (1) Actual 

Values 

Positive (1) 

Negative (0)  Negative (0) 

Table 1: Confusion matrix of experimental results. 
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Discussion 

The proposed multi-product surface defect detection and 

classification system effectively addresses the challenges of detecting 

defects in injection-molded products through a robust combination of 

hardware configuration and advanced image processing techniques. 

The experimental results demonstrated a high accuracy of 95%, 

successfully distinguishing normal products, cracks, and sink marks. 

In particular, Gaussian filtering and histogram equalization improved 

image quality, while Canny edge detection and threshold-based 

analysis accurately Isolated Regions of Interest (ROI), enhancing the 

sensitivity and reliability of defect detection. However, some false 

positives and false negatives were observed during the experiments, 

indicating the need for further fine-tuning of the algorithm. False 

positives could increase production costs by misclassifying normal 

products as defective, while false negatives could allow defective 

products to pass quality control. Optimizing parameters such as 

threshold values and edge detection sensitivity will be essential to 

mitigate these issues and improve classification accuracy. The current 

system focuses on detecting cracks and sink marks, but future 

research should expand its capabilities to classify additional defect 

types, such as warpage or surface contamination, to increase its 

applicability. Moreover, improving robustness to environmental 

variations, such as changes in lighting conditions or product 

positioning, will enhance the system's reliability. Integrating adaptive 

lighting systems or machine learning models with real-time learning 

capabilities could further improve the system's accuracy and 

adaptability in dynamic manufacturing environments. In summary, 

this study demonstrates the high potential of the proposed defect 

detection algorithm and provides a foundation for revolutionizing 

quality control processes in high-speed production environments. 

With further research and optimization, the system is expected to 

evolve into a more robust and versatile quality control solution. 

Conclusions 

The proposed multi-product surface defect detection and 

classification system offers a practical and effective solution for 

identifying defects in injection-molded products with speed and 

accuracy. The experimental results demonstrated a high overall 

accuracy of 95%, successfully classifying normal products, cracks, 

and sink marks. The image processing steps, including Gaussian 

filtering, histogram equalization, Canny edge detection, and 

threshold-based analysis, significantly improved the sensitivity and 

efficiency of defect detection. Additionally, the triple product feeder 

system and optimized optical design enabled simultaneous processing 

of multiple products, showcasing excellent scalability and practicality 

for high-speed manufacturing environments. However, some false 

positives and false negatives were observed during the experiments, 

indicating a need for further fine-tuning and optimization of the 

algorithm. Expanding the classification capabilities to include 

additional defect types beyond cracks and sink marks would enhance 

the system's versatility. Furthermore, increasing robustness to 

environmental variations, such as lighting and positioning 

inconsistencies, is essential for broader applicability. The integration 

of IoT-based real-time monitoring and feedback systems could also 

enable higher levels of automation and accuracy. In conclusion, this 

study provides a reliable and practical foundation for quality control 

and defect detection in injection-molded products. With further 

improvements, the system has the potential to evolve into a 

comprehensive defect detection solution that can be applied to diverse 

manufacturing environments. These findings contribute to improving 

production quality and efficiency, laying the groundwork for more 

advanced quality assurance systems in the future. 
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