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Abstract

We present Stratified Density Gravity (SDG), a reformulation of gravitation in which the fundamental manifold is described by (x,y,z,p)
rather than (t,x,y,z), with p representing local gravitational depth / energy density. In this framework time is not a fundamental coordinate;
instead, it emerges as a macroscopic ordering parameter associated with irreversible relaxation of density stratification (entropy production).
We show that curvature is sourced by spatial stratification of p and we obtain a field equation in which local curvature depends on
inhomogeneities in p, while large-scale curvature depends on the homogeneous background component of p. The local sector reproduces
Newtonian gravity in the weak-field limit, which fixes the relevant coupling. The global sector yields a dynamical large-scale curvature term
that provides an alternative to the cosmological constant A and explains cosmic acceleration as a background-density phase. Because curvature
depends on second spatial derivatives of p, singularities do not form in collapsed regions: high density cores remain finite. The framework
therefore preserves the known weak-field and observational successes of General Relativity (GR) while addressing the cosmological constant
problem and the classical singularity problem.

Keyword: Modified gravity, General relativity, Cosmology, Cosmic acceleration, Black holes, Singularity resolution, Horizonless compact
objects, Scale-dependent growth, Bianchi identity, Stratified density field

Introduction

General Relativity (GR) models’ gravity as the curvature of a In this work we develop a framework in which density, not time,
four-dimensional space-time manifold with coordinates (t, X, y, z)  plays the role of the “fourth” coordinate of the gravitational manifold.
[1,2]. GR has been confirmed in a broad range of regimes, including ~ We call this Stratified Density Gravity (SDG). The basic principles
perihelion precession, gravitational redshift, light bending and are:
lensing and the existence of gravitational waves [3]. These classical

and modern tests of General Relativity are comprehensively reviewed > The physical manifold is (x, y, z, p), where p is a scalar
in [4]. coordinate that encodes local gravitational depth / energy
density.
However, several open issues remain: » Time is not fundamental; it is interpreted as an emergent
macroscopic parameter that orders the irreversible relaxation
> Cosmological constant problem. The observed accelerated of p-stratification and the associated increase in entropy.
expansion of the universe is typically modeled in GR by »  Curvature is sourced directly by spatial stratification of p.
introducing a cosmological constant A, interpreted as a The field equations separate naturally into a local
vacuum stress-energy with effective equation-of-state inhomogeneity term and a homogeneous background term.
parameter w ~ —1 [5-7,8]. The magnitude of A is not > The local coupling is fixed by requiring that the weak-field
predicted by GR and naive estimates of the vacuum energy limit reproduces Newtonian gravity. The global coupling is
overshoot the observed effective value by many orders of fixed by requiring consistency with homogeneous
magnitude. This historical development and its modern cosmology; this replaces the role of A with a quantity
interpretation as dark energy are reviewed in [8]. determined observationally, rather than inserted by hand.
> Spacetime singularities. Classical GR predicts curvature >  Because curvature is controlled by second derivatives of p,
singularities in black-hole interiors and at the Big Bang. At not by a divergent stress- energy, extremely dense regions
these points the manifold description formally breaks down. become finite and smooth at their core. The r— 0
geometric equal footing with space. But physically, time
exhibits an arrow: macroscopic processes proceed We will show that this construction:
irreversibly, entropy increases and causal ordering is . . )
asymmetric. GR by itself does not explain the origin of this >  Reproduces Newtonian gravity and the standard weak-field
arrow. phenomenology of GR (e.g. gravitational redshift, lensing).
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»  Produces late-time cosmic acceleration through a dynamical
background-density coupling rather than a fundamental
cosmological constant.

» Eliminates curvature singularities at r =
spherically symmetric configurations.

» And provides a geometric-thermodynamic origin for
macroscopic time’s arrow.

0 in static,

We argue that SDG preserves the empirical successes of GR
while addressing three core conceptual gaps: the cosmological
constant problem, singularity formation and the absence of an
intrinsic arrow of time [5-7].

Foundational Assumptions
Spatial extension is three-dimensional

Physical extension is described by spatial coordinates (x, y, z).
Density is the fourth coordinate

We extend the manifold not by t but by a scalar p,

(xH=(x,y,zp), i=1,23,4,

where p is interpreted physically as gravitational depth / energy
density. The manifold is therefore four-dimensional, but its fourth
coordinate is density, not time.

In the weak-field regime we will identify

p=2, @)

where @ is the Newtonian gravitational potential and c is the
speed of light. This normalization makes p dimensionless to leading
order and ties it directly to an experimentally accessible potential.

Curvature is generated by stratification of p

Gravity is described as curvature induced by spatial gradients and
second derivatives of p. Mass-energy does not act through an
externally specified stress-energy tensor T,,, ; instead, it appears in the
theory through the spatial structure of the scalar density coordinate p.

Time is emergent from p-relaxation

Macroscopic “time flow” and its arrow are associated with the
irreversible smoothing of initially steep p-gradients. Entropy
production corresponds to the redistribution and relaxation of
stratified density. Observers parameterize this monotonic relaxation
using a scalar parameter, which they call t. In this sense, t is emergent
and thermodynamic, not fundamental and geometric.

No singularities

Because we will formulate curvature in terms of second
derivatives of p, rather than unbounded stress-energy sources,
collapsed objects approach a high but finite value p, with Ap — 0 and
A;Ajp — finite at r = 0. This prevents curvature blow-up. The same
mechanism eliminates a formal “Big Bang” singularity: the early
universe can begin at a high but finite p, without infinite curvature.

Geometric Structure of the (x, y, z, p) Manifold
Metric ansatz

‘ We define the line element on the manifold M with coordinates
(xl) = (X’ y’ Z’ p) as

ds? = gop(x,y, 2z, p)dx®dxFf + f(p)dp?,
@

where g,z is the spatial three-metric on constant-p slices and

f(p) dp? measures the “geometric separation” between density
layers.

a, B € {xy,z},

High-field meaning and range of p. In weak fields p = ®/c? is
dimensionless and small. In strong fields, p is a geometric depth
coordinate: constant-p slices foliate the manifold; increasing p labels
deeper layers. The physically relevant range is set by the solution of
(18) given matter sources and boundary data. In compact objects, p
saturates at a finite central value p. with Vp — 0, while in cosmology
Ppg is the homogeneous component that controls the sign of o,
(Sec. 6-7). No singular behaviour is required or allowed: p and its
second derivatives remain finite in all regular solutions.

We define the Christoffel symbols I}}‘ in the usual way and
compute the Riemann tensor R{‘ﬂ,, Ricci tensor R, Ricci scalar R and
the Einstein tensor

Gij =Ry — %Rgijr i,j € {x,y,2,p} 3

Physically, f (p)dp? plays the role that the gravitational potential
depth plays in GR’s g;; component: deeper density layers correspond
to slower local processes and stronger curvature. In standard GR this
behaviour is often described in terms of “time dilation” due to g¢;;
here it is recast geometrically along the p direction itself.

Field Equation
We postulate the field equation of SDG in its general form:

Gij = aV;Vj, + Bpgij, i,j € {x,y,2p} 4)
Here Vi is the covariant derivative compatible with g;;. The two
couplings are:

»  a: controls local curvature sourced by inhomogeneities in p.
This term must reduce to Newtonian gravity in the weak-
field limit and reproduce standard GR tests [2,3].

> PB: controls homogeneous background curvature sourced by
the spatially uniform part of p. This term will reproduce the
role that A plays in GR cosmology but in SDG we will
determine B from cosmological observables rather than
insert it as a constant [5,6].

In what follows, o is determined by the Newtonian limit and f is
determined by homogeneous cosmology. Throughout, we write pj,g
for the large-scale homogeneous back- ground of p (the cosmological
mean).
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Local Limit and the Determination of o

To recover Newtonian gravity, consider the weak-field, slow-
motion limit around nonrelativistic matter. Let ® be the Newtonian
gravitational potential, which satisfies

V2D = 4nGp,,, (5)

with p,,, the usual mass density. In this regime we identify
[
== (6)

which makes p dimensionless to leading order. Taking the
Laplacian of (6) gives

4G
V2p =2 pm. @)

We now evaluate (4) in this weak-field regime. On Solar System
scales the homogeneous background term Bpg;; is negligible
compared to local inhomogeneities, so we drop it. We also assume
the spatial metric is nearly Euclidean so covariant derivatives reduce
to ordinary derivatives.

Under these assumptions, take the spatial trace of (4). Let a, 8 €
{x,y, z} denote spatial indices. Then

G = aV,V%p = aV?p. 8)

In standard GR, the weak-field 00-component of Einstein’s
equations effectively repro- duces (5) and gives

G
GE=~"Cp,, ©)

ez
see, e.g., [2]. Using (7) in (8) yields
4G 8mG
a (:_zpm) = :_zpm:
so that
a=2. (10)

Thus the coefficient multiplying V;V;p is fixed by the Newtonian
limit and the weak field phenomenology of GR [3]. It is not a tunable
parameter.

With this, the SDG field equation becomes
Gij =2ViVip+ B p gij.

Bianchi identity and the differential constraint for p

1)

The covariant Bianchi identity VG;; = 0 applied to the SDG field
equation

Gij =2ViVip + Bpgij (12)

implies a consistency condition that constrains permissible p-
configurations. Taking V! of (12) and using V:g¥ = 0 gives

0 = 2V'7,W;p + V;(Bp). (13)

Commuting covariant derivatives on a scalar gradient yield (for
any scalar @) V'V;V;¢ = V;(0p) + R} Vi, where 0 = V' V;. Thus
(13) becomes the vector identity

Vi(2op + Bp) = =2RfVyp . (14)

Equation (14) is the differential constraint on p implied by the
Bianchi identity. Two important limits follow immediately.

Homogeneous (FRW) background

On Hubble scales we assume p = p,,, is spatially homogeneous,
SO Vyppg = 0. Then the right-hand side of (14) vanishes and we
obtain

Vi(20ppg + BPpg) = 0 = 20ppg + Bppg = C(A), (15)

with C(A) a (spatially constant) integration function along the
monotone evolution parameter A that orders the macroscopic
relaxation (cf. Sec. 8). In an exactly stationary background one may
set C = const.; in practice C(A) encodes slow secular drift of the
background density sector.

Weakly curved, static configurations

For the static, spherically symmetric case of Sec. 9 with p = p(r)
and small curvature near the center, the term R}‘Vk_p is subleading.
Thus (29) reduces to

V;(2op + Bp) = 0

which reproduces the radial structure equation used in Sec. 9 and
yields the regular near-core expansion

= 20p+ Bp = const. (16)

p() = p[1-Lr2+00")]. an

This demonstrates explicitly that the SDG source 2V;V;p + Bpg;;
is compatible with G;; =0, ensuring consistency of the field
equations and forming the basis for the background evolution and
perturbation dynamics developed later. Equation (14) is the precise
statement that the SDG source 2V;V;p + Bpg;; is compatible with
V;G;j = 0. 1t will be used below to produce background evolution
equations and the linear perturbation dynamics.

Matter coupling and covariance of the p equation

In the Newtonian/weak-field limit (Sec. 5) we identified p = ®/c?
and recovered VZp = (4”0) pm. The covariant generalization

=
consistent with this limit and with (14) is to close the system by a
single scalar equation
anG ,
p=(2)s- o+ v

CZ

(18)

where S is a covariant scalar that reduces to p,,, for nonrelativistic
matter (pressure p < p,,c?) and U(p) is an optional self-interaction

potential encoding high-density microphysics. A minimal,
conservative choice is
3
S=pm—2 (19)

i.e. the usual relativistic trace combination that reduces to p,, in
the weak-field regime.

Consistency with the Bianchi constraint. Taking V; of (18) and
substituting into (14) gives
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8mG ,
Vi(20p + Bp) = 5 VS +2V;U'(p) = —2RfVyp,

which is automatically satisfied in homogeneous FRW (where
V;= 0 = V;p) and reduces, in static weak fields, to the Poisson form
used in Sec. 5.

Interpretation

Equations (12) and (18) together define SDG as a closed system:
curvature is determined by spatial stratification of p, while p is
determined by matter (through S), the background coupling  (Sec. 6)
and possible self-interaction U. Setting U = 0 is sufficient for all
results shown in this paper; nonzero U can encode finite-density
microphysics without altering the large-scale conclusions.

Consistency with Local and Weak-Field Tests

A complete gravitational framework must reproduce all weak-
field phenomena verified by general relativity. Here we summarize
the consistency of Stratified Density Gravity (SDG) with the three
canonical tests: Gravitational redshift, light deflection and
gravitational- wave propagation.

Gravitational redshift

In SDG, redshift arises from gradients in the density potential p.
For a static weak field, the temporal component of the metric satisfies
Goo = 1+ 2dp/c?, where &, = (aG(p — po)/r?dr) dr plays the
role of the Newtonian potential. The fractional frequency shift
between two density layers is therefore

which coincides with the general relativistic prediction to first
order when o = 2 as derived in Section 5. This ensures that all
laboratory and solar-gravitational redshift tests (e.g. Pound—Rebka,
Hafele—Keating, GPS corrections) are automatically satisfied.

Redshift as a constraint on the SDG clock factor

In SDG the physical proper time along a worldline is related to
the global evolution parameter A through

dr = F(p) dA, (20)

where F(p) is a priori an arbitrary positive function reflecting that
time is not a fundamental coordinate but an emergent rate associated
with stratification. Gravitational redshift measurements, however, fix
the functional dependence of F(p).

Consider two static observers located at radii r1 and rz2 in a weak
gravitational field. Both follow integral curves of the density
foliation, so their rate of proper time with respect to A is given by
F(p1) and F(p2) respectively. If n(L) counts wave crests of a photon
emitted at r1 and received at r2, then

yo = _ 1 dn _dn_ 1 dn (21)
emit = gz, T F(py)dd’ T®¢ T dr,  F(p;)dd’

so that the observable frequency ratio satisfies

Vrec — F(pl) (22)

Vemit - F(pz)'

In general relativity the redshift between two static observers in a
static metric

ds? = g (r)c?dt? + g,,dr? + r2dQ? (23)

is given exactly by

Vrec — Jee(r?)

Vemie N Gee()’ (24)

Because laboratory, satellite and solar-system redshift
measurements agree with (24) to parts in 10°- 107, SDG must satisfy

F(pY) G - . .
——= = |Z=— for all weak-field configurations. 2
oD~ N geer) eak-field configurations (25)

The only solution of this functional equation is

F(p) = , (26)

where C is a constant absorbed by rescaling A. Choosing units
such that C = 1 yields the SDG clock law

da

\ gﬁ[f(p)’

identical in form to the GR relation dt = \/Edt but with the
role of coordinate time t played by the emergent parameter A.
Expanding (27) for a weak gravitational potential where g,; = 1 +
2@/c? + 0(P?) and using p = @ /c? (Sec. 5) gives

F(p)=1-p+0(p?), (28)

which reproduces the observed gravitational time dilation to
leading and next-leading post-Newtonian orders.

dt = 27)

Thus, gravitational redshift does not merely constrain SDG—it
uniquely fixes the functional dependence of F(p) and ties the rate of
emergent time directly to the effective lapse function of the metric.
There is no remaining freedom in the definition of dt consistent with
experiment.

Light deflection and time delay

In SDG, photons follow null geodesics of the same curved spatial
geometry determined by p(x). The metric near a mass distribution can
be written in isotropic coordinates as

29 29
ds? = (1+22) c2de? — (1 - 22) (dx® + dy? + dz?)
which leads to a light-bending angle

4GM
AG = ,
c?b

identical to that predicted by GR when a = 2. This equality
extends to the Shapiro time delay in radar ranging experiments,
confirming that SDG reproduces post-Newtonian optics with the
same first-order parameter y = 1.

Parametrized post-Newtonian parameters

The Parametrized Post-Newtonian (PPN) framework expands the
metric around Minkowski space in powers of U/c?, where U is the
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Newtonian potential generated by a slowly moving source [9]. In
isotropic coordinates the weak-field metric of any metric theory can
be written as

2U U? U3
Joo=1- =t 2BppN i 0 (g) (29)
g0 =0(%). (30)
U U?
gij=—(1+2yc—2)6ij+05—4 . (31)

as in the standard PPN formalism [9].

The parameter y measures the amount of spatial curvature
generated per unit Newtonian potential, while Bppy quantifies
nonlinear self-gravity.

In SDG the weak-field limit is governed by
Gij = 2ViVip, (32)

where the Newtonian limit (Sec. 5) fixes p = U/c? and o = 2.
Expanding g;; to first order and using the standard linearized
expressions for the Einstein tensor in harmonic gauge [10],

G = 2v2u/c?, (33)

the SDG source term

2
2

2V,Vip =< 0,0,U (35)

implies that the spatial metric perturbation must satisfy

@ _,U
hii” =256y, (36)
which corresponds to the PPN value
y=1. (37)

This is consistent with the equality of the SDG and GR
predictions for light deflection and the Shapiro time delay derived
above.

To determine Bppy, We extend G, to second order. In the PPN
expansion one finds [9]

v:U uv:u U3
Goo = 220 +2(2Bpen - D2+ 0 (%) (38)
In SDG the identification p = U/c? ensures that all nonlinear
contributions to G, generated by V;V;p appear in exactly the same
combinations as in GR: There is no additional scalar degree of
freedom and no modification of the second-order gravitational self-
energy.

Thus, the coefficient of UV2U must match the GR value, yielding
Bppn = 1. (39)

Hence SDG reproduces the full suite of post-Newtonian
constraints:

y=1PBppn =1, (40)

in agreement with all present Solar-System bounds. Together
with the exact Newtonian limit (a0 = 2), gravitational redshift and
light-deflection results above, this shows that SDG is locally
indistinguishable from GR throughout all presently tested weak-field
regimes.

Gravitational-wave propagation

Linearizing the field equation G;; = aV;V;, + B,4; about a
homogeneous  background p = py +6,,,9;; = n;; + h;; and
imposing the transverse—traceless gauge gives, to first order,

Dhi]' = 0,

up to corrections of order V;V; (6,/po), which vanish in vacuum.
Thus, in empty space where V,~ 0, SDG predicts the same two
tensorial polarizations of gravitational waves traveling at ¢ as GR.
This satisfies all constraints from LIGO/Virgo timing and polariza-
tion measurements and confirms that no additional degrees of
freedom propagate in the linear limit.

Summary

The recovery of the exact Newtonian potential (o = 2), correct
light deflection, standard redshift formula and tensorial gravitational
waves implies that SDG is indistinguishable from GR in all presently
tested weak-field regimes. Deviations are therefore expected only in
the strong-field and cosmological sectors, precisely where GR
requires ad-hoc constants or encounters singularities.

Cosmological Limit and the Determination of f§
We now consider the opposite regime: homogeneous cosmology.

Assume that on Hubble scales p is spatially homogeneous and
slowly varying:

p = ppg = constant on large scales, (41)

so that V;V;p ~ 0 on those scales. Here p,, is the smooth
background density of the universe. In this limit, (11) reduces to

Gij = BPpgij- (42)

In homogeneous, isotropic cosmology using GR, the Friedmann
equation for a spatially flat FRW universe is [2,4,5,8]

2N\ 2
2 = g
H* = (a)
where H is the Hubble parameter, a is the scale factor and A is the

cosmological constant. In GR, A appears in Einstein’s equations as a
term proportional to g,,,,.

8mG A
== Ppgt3 (43)

Comparing (42) with the GR form G,,, = —Ag,,, in the vacuum-
energy-dominated limit suggests the identification

Aegr = —BPpg- (44)

This identification parallels the role of A in standard relativistic
cosmology as discussed comprehensively in [4,8]. Eliminating A.zf
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Aeff = 3H2 — 8nG pbg'
Combining with (44) yields
3H? — 8nGppy = —BPpg-

Solving for B: B = 8nG — ziz (45)

bg
Equation (45) is the large-scale analogue of (10). It shows:

» P is not arbitrary. It is determined by the cosmological
expansion rate H and the homogeneous background density
Pbg-

> P can evolve in cosmic time, because H and p;, evolve.

»  The role played by A in GR is here played by a dynamical
curvature coupling B that emerges from the same p field that
drives local gravity [5-7].

Emergence of an effective cosmological term

Equation (24) shows that in a homogeneous and isotropic
background the SDG field equation
Guv = ZVqupbg + prgguv (46)

reduces to a modified Friedmann system in which the quantity
Bppg multiplies the metric exactly as a cosmological constant would
in general relativity. We now make this correspondence explicit.

For a spatially flat FRW metric,

ds? = —c2dA? + a?(1)dx?, (47)
the Einstein tensor satisfies
Goo = 3H?,G;j = —(2H + 3H?)a?5y;. (48)

Because pp, depends only on A, the terms involving second
covariant derivatives simplify:

VoVoPbg = Phg: ViViprg = Hppg a’ 6ij- (49)
Using these relations in (46), the 00-component becomes

. 8nG
3H? = 2P + BPogc® + 5 Pm, (50)

where the matter term arises from identifying the trace part of the
Einstein tensor with the usual GR coupling (Sec. 5). In the quasi-static
regime in which g, is small compared to Hp,,—a condition
satisfied at late cosmological times and encoded in Eq. (24)—the
derivative term may be moved to the right-hand side of the equation.
One then obtains the effective Friedmann equation

8mG
3H? = =2 pm = BPygc”. (51)
Comparing (51) with the standard GR form

8mG
3H? = =2 (pm + ), (52)

we identify the SDG-induced effective dark-energy density as

2

Paeff = ~ gng Py (53)

Equivalently, the geometric term multiplying the metric in (46)
behaves exactly as a cosmological constant of magnitude

Aeff = _ﬁpbg- (54)

Interpretation

Equation (54) shows that cosmic acceleration in SDG originates
not from a fundamental vacuum constant but from the large-scale
stratification of the density coordinate. As the universe expands and
ppg evolves, the effective cosmological term evolves with it,
providing a natural mechanism for late-time acceleration without
introducing a separate dark-energy sector. This replaces the
cosmological constant problem of GR with a dynamical, physically
motivated quantity tied directly to the geometry of stratification.

Relation to the deceleration parameter

It is useful to connect 3 to an observable cosmological quantity.
The deceleration parameter q is defined by

= -4 (55)

a2

For an FRW universe containing a perfect fluid with energy
density € and pressure p, one may write

g=1(1+3%). (56)

Combining the standard Friedmann acceleration equation with
(43) gives

3H2(1+ q) = 8nGpyg. (57)
Insert (57) into (45) to express B in terms of q:
ﬁ=8nG—£=8nG—M= _8m6
Pbg Prg(1+q) 1+q

Thus

_ 816
B =11 (58)
Thereforef and g have the same sign:
B<0sqg<0 (accelerating expansion), (59)
B>0 =¢q<0 (decelerating expansion). (60)

The transition B = 0 corresponds to q = 0, which is the moment at
which the universe switches from deceleration to acceleration. In
GR+A, the onset of acceleration is attributed to “dark energy
dominance.” In SDG, it is a geometric phase change in the density
coupling .

Normalization and dimensional
stratification field

consistency of the

A central requirement for internal consistency is that all terms
appearing in the field equations carry the correct physical dimensions.
In Stratified Density Gravity, the fundamental scalar field p is defined
through the weak-field limit as

[

p =2, (61)
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where O is the Newtonian gravitational potential. Since ® has
units of velocity squared, p is dimensionless. This choice ensures that
p encodes the relative depth of spacetime stratification rather than an
energy density.

The field equation
Gij =2ViV;, + Bpgij (62)

therefore, requires the coefficient B to carry units of inverse length
squared,

8] = L7, (63)

so that both terms on the right-hand side have the same physical
dimension as the Einstein tensor.

In a homogeneous cosmological background, p = py4(t) and
the stratified term vanishes at leading order, leaving

Guv = ﬁpbg Guv- (64)
This identifies the effective cosmological curvature as
Aeff = _ﬁ Prg, (65)

which carries the correct dimensions of inverse length squared
and plays the same geometric role as the cosmological constant in
Einstein gravity.

Importantly, no additional energy density is introduced: The
quantity p is dimensionless and all dimensional information resides
in the single curvature scale 3. This guarantees internal dimensional
consistency and ensures that the theory does not introduce hidden or
redundant degrees of freedom.

Background closure from the Bianchi identity

In homogeneous FRW, V;p;,, = 0. Recalling the homogeneous
Bianchi identity of Eq. (15), the background relation may be written
as

20png + Bpvg = C(A). (66)

Using the FRW kinematics and the relation 3H2(1+ q) =
8nGp,, from Eg. (36), the large-scale SDG sector may be
parameterized purely by observables H(A) and q(A). Using the FRW
kinematics and the relation 3H2(1 + q) = 8nGpy, from Eq. (19),
the large-scale SDG sector may be parameterized purely by
observables H(L), q(A) via

B = 15 q), Ao () = —BW) ooy, (67)

and Eq. (66) sets a first-order constraint linking the drift of p,,
(or H) to the slow evolution of C(A). In particular, a strictly constant
late-time acceleration sector corresponds to dp/dA = 0 and dC/d\ =
0; any detectable drift of q(z) away from its GR+A behaviour implies
dp/dr~ 0.

Present-day Q-split as a curvature partition

A central empirical fact in relativistic cosmology is that the
present-day expansion rate may be expressed in terms of a matter
fraction Q,,, and an acceleration fraction Q,o=1— Qp,, (for

spatial flatness). In standard GR+ACDM this is often described as a
partition between “matter” and a separate “dark-energy” sector. In
SDG, the same split admits a direct geometric interpretation: it is a
partition of spacetime curvature between the stratified channel 2V;V;,
and the homogeneous channel Sp g;; of the same underlying field p.

Curvature units

Define the present-day critical density

3H3
pcrit,O = ﬁr (68)

S0 that pmo = QumoPerito- Multiplying by 8mG/c* expresses
densities in curvature units:

8mG 3HZ

2z Perito = 7 (69)

Assuming spatial flatness, the present-day Friedmann budget may
be written as the exact curvature partition
3HZ 8nG
ra =m0 *
<
matter—associated curvature

Ao , (70)

—
acceleration—associated curvature
with Ay = (1 — Qun0)3HZ/c? in GR+ACDM.

Why we use Qo= 0.315. We adopt Q,,, = 0.315 as the
Planck 2018 best-fit matter fraction for the baseline flat ACDM
model [10]. This is not a tuning parameter of SDG; it is an
observational calibration point for the present epoch. Any viable
alternative to GR must match the measured curvature budget at z = 0.

Exact present-day curvature weights and closure. With Q,, o=
0.315, the matter-associated curvature in Eq. (70) is

8mG 3HZ H?
T Pmo = Qo = 0,945, (71)

and the acceleration-associated curvature is

3HZ
CZ

Ao = (1= Q) 28 = 2,055, 72)

These satisfy the exact identity

09452 4 2 055 4 = 26 (73)
c c c
which is simply Eq. (69) rewritten as a closed numerical partition
of the present-day spacetime curvature budget. The corresponding

fractions are
Qmo ~ 31.5%,1— Qo ~ 68.5%. (74)

Thus, at z = 0, roughly two thirds of the curvature budget is
carried by the acceleration associated sector and one third by the
matter associated sector.

Geometric interpretation in SDG

In SDG, the large-scale field equation reduces to G,,, = Bppg9,w
on Hubble scales (Sec. 6) and we identified an effective cosmological
curvature
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Aesr = —BPpg- (75)

The observed Q-split therefore admits a purely geometric
reading: the matter-associated curvature fraction corresponds to the
stratified channel 2V;V;p (dominant in the local/inhomogeneous
regime), whereas the acceleration-associated fraction corresponds to
the homogeneous channel Sp g;; (dominant in the background FRW
regime). In this sense, the empirical Q-split measures how the total
curvature of the universe is distributed between two curvature
channels of the same stratification field.

This is the precise meaning of the statement that “matter” and
“acceleration” are not separate sectors in SDG: They correspond to
two geometric phases of curvature sourcing generated by p.

Expected magnitude of deviations from general relativity

A viable modification of gravity must reproduce all currently
tested predictions of general relativity while allowing for controlled
deviations only on scales that remain observationally weakly
constrained. In this section we estimate the magnitude and scale
dependence of deviations predicted by Stratified Density Gravity
(SDG) and we state explicitly the assumptions underlying the
numerical estimates.

Linearized regime and effective coupling (assumption). In the
quasistatic, linear scalar sector about a homogeneous FRW
background, the modified Poisson equation may be written
schematically as

V2P = 4nGopp(k, a)pm, (76)
with an effective gravitational coupling of the form

1
Gers (k@) = G (HE2), @)

where k is the comoving wavenumber. This estimate is intended
to quantify the order of magnitude of the scale dependence in the
linear regime; a full treatment near the transition scale requires the
time-dependent perturbation evolution (see discussion below).

Characteristic transition scale

Equation (77) defines a characteristic scale

k.(a) = JIB(a)l,

separating k > k., (GR limit) from k < k, (modified regime).
From the background cosmology derived in Sec. 6, 8(a) is of order
H?(a), so at the present epoch we take the conservative normalization

|Bol ~ HE ,

which fixes the deviation scale to be of order the Hubble radius.

(78)

(79)

Numerical values
Using Hy =~ 67.4 kms~! Mpc~! (Planck 2018 baseline), one has
Hy~219x 10718571 = % ~225x10~*Mpc~!,  (80)

So the characteristic comoving horizon scale today is k ~
Hy/c ~2x10~* Mpc~t. For sub-horizon modes (k > k,), the
fractional deviation from GR scales as

—_~ =~

(81)

Therefore, for representative large-scale structure wavenumbers,

_ 1 _ A6 (225x107H\? P

_ 1 _ A6 (225x107H\? 4

_ 1 _ A6 (225x107H\? 2
k = 0.1 Mpc =>?~(T) ~5x 1072, (84)
Thus, deviations are generically < 10™* on the k=

1072 Mpc~?! scales typically used for galaxy clustering and weak
lensing, while they become potentially significant only on ultra-large
scales approaching the horizon.

Validity domain (important)

Because the modification turns on near k ~ k, ~ Hy/c, the
quasistatic estimate (77) should be interpreted as an order-of-
magnitude guide for k > k,. A full computation of growth and CMB-
scale observables near the transition requires the time-dependent
perturbation equations (Sec. 7 and Appendix C). This does not
weaken the conclusion above: on all sub-horizon scales currently
probed with high precision, the predicted deviations are naturally
suppressed.

Interpretation

The same curvature scale  that controls the onset of cosmic
acceleration also sets the scale at which deviations from GR can
appear. This ties the background expansion and linear perturbation
phenomenology together within a single geometric framework, rather
than introducing an independent dark-energy sector.

Domain of validity and scope of the theory

The formulation of Stratified Density Gravity (SDG) presented in
this work is intended as a consistent classical extension of general
relativity in regimes where spacetime curvature is weak to moderate
and the dynamics can be described by a smooth background geometry
with perturbative inhomogeneities.

Regime of validity
The theory is constructed to apply under the following conditions:

> Curvature scales satisfy |R| < £pZ, ensuring that quantum-
gravitational effects are negligible.

»  The spacetime geometry is well described by a differentiable
metric with small perturbations around an FRW background.

»  The stratification field p varies smoothly on cosmological
scales, such that its gradients are well defined and higher-
derivative corrections remain subdominant.

Within this regime, SDG reproduces general relativity in all
regimes that have been observationally tested, while allowing
controlled departures on the largest accessible scales.

Relation to standard gravity and limits of applicability

The theory is constructed such that:
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» Inthelimit B — 0, SDG reduces exactly to general relativity.

»  In the weak-field and small-scale limit, all post-Newtonian
parameters coincide with their GR values.

»  Deviations appear only when the curvature scale approaches
|8| ~ HZ, corresponding to cosmological distances.

Thus, SDG is not a modification of gravity at all scales, but a
controlled extension that becomes relevant only in the ultra—infrared
regime.

Scope and limitations

The present formulation does not attempt to describe physics at
the Planck scale or within strong-field regions such as the immediate
vicinity of singularities or inside black hole horizons. Instead, it
provides an effective description of gravity valid from laboratory and
astrophysical scales up to cosmological horizons.

The theory also does not introduce new propagating degrees of
freedom or screening mechanisms. All deviations arise from the
geometric structure of the field equations themselves. Consequently,
any departure from general relativity predicted here is inherently
constrained and testable.

Falsifiability

The framework yields clear observational consequences:
Deviations from general relativity appear only at scales comparable
to the Hubble radius and follow a specific scale dependence
determined by the parameter B. Failure to observe such deviations in
upcoming large-scale surveys would falsify the theory, while
confirmation would provide direct evidence for the geometric origin
of cosmic acceleration proposed here.

Observational signatures and falsifiability

A defining feature of any viable modification of gravity is the
existence of clear observational signatures that distinguish it from
General Relativity. In the present framework, such signatures arise
not from new degrees of freedom, but from the scale dependence
induced by the stratified curvature structure of spacetime.

Scale-dependent growth of structure. Because the effective
gravitational coupling depends on scale,

Gerr (k) =G (1+5), (85)

the growth rate of matter perturbations acquires a mild scale
dependence. In particular, the linear growth factor D (a, k) deviates
from the scale-independent form predicted by ACDM, with
deviations becoming appreciable only for modes approaching the
Hubble scale.

This implies that large-scale clustering observables—such as
redshift-space distortions, weak lensing convergence spectra and the
integrated Sachs—Wolfe effect—provide direct tests of the theory.

Predicted observational window. Using the estimates from Sec.
7.5, the fractional deviation in the effective gravitational coupling is

AG _Ho

G k' (86)

implying that measurable deviations may arise only on very large
scales (k < 1072Mpc~1). On smaller scales, the theory rapidly

converges to standard GR, ensuring consistency with precision tests
in the solar system and in galaxy dynamics.

Observational avenues
The most sensitive probes of the predicted deviations are:

large-scale galaxy clustering and redshift-space distortions,
weak gravitational lensing at low multipoles,

the late-time Integrated Sachs—Wolfe effect,
cross-correlations between large-scale structure and the
CMB.

YVVV

These observables probe precisely the regime in which SDG
predicts deviations from ACDM while remaining compatible with
existing constraints.

Distinctiveness relative to other modified gravity models

Unlike many modified gravity scenarios that introduce screening
mechanisms or additional propagating degrees of freedom, SDG
predicts a smooth, scale-driven departure from GR governed by a
single parameter B. The absence of new fields or screening transitions
makes the theory highly predictive and falsifiable, with clear
observational signatures tied directly to the background expansion.

Summary

The observational imprint of Stratified Density Gravity is
therefore both restricted and distinctive: negligible deviations on
small scales, growing effects near the horizon scale and a fixed
relation between background expansion and perturbation growth.
This places the theory squarely within the reach of upcoming
cosmological surveys while preserving consistency with all current
tests of gravity.

Linear Perturbations about FRW and Structure
Growth

background. Linearizing (12) and (18) gives, in Fourier space and in
longitudinal gauge for scalar modes (neglecting vector/tensor for
brevity),

5Gz(f) = 2ViV;6p + BSpGij + PpgOBGij . (87)
1y
06p =505 = L8p =2 puy (88)

For subhorizon scalar modes (k > aH) and nonrelativistic matter
(8S = 8py,), the dominant piece reduces to a Poisson-type relation

4G
CZ

k?6p =~ —a%6pm, (89)

which reproduces the standard growth law at leading order. On
large scales (k ~ aH), the homogeneous term S p;,, contributes and
the SDG prediction for the growth rate fgg(z) can differ from GR+A
in a way controlled by B(z) of Sec. 6. A full treatment with baryons
and radiation follows the usual Boltzmann hierarchy with the
replacement ® — c?p in the scalar sector; this will be pursued in the
companion cosmology paper.
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Interpretation and Phases
Equation (11) with (10) and (45) can be summarized as

Gij =2V;Vip + Bpgij- (90)

This suggests two distinct but unified regimes:

> Local regime. The 2V;V;p term dominates where p varies
strongly in space. This regime reproduces Newtonian
gravity and the weak-field tests of GR. Since o =2 is fixed
by (10), SDG automatically agrees with the classical limit of
gravity [2,3].

>  Cosmological regime. The Bpg;; term dominates where p is
nearly homogeneous on Hubble scales. This is the analogue
of a cosmological constant term. However, unlike GR’s
constant A, SDG predicts a f that is determined by (H, pj4)
via (45) and is therefore, in principle, epoch-dependent. This
gives a dynamical account of late-time acceleration [5-7].

It is also useful to write

Bprg = 8rGppg — H?. (91)

Bprg >0 &= 8uGpp, >3H>  (decelerating /  matter-
dominated-like phase),

Bppg >0 &= 8mGpy, < 3H?  (accelerating / vacuum-

dominated-like phase).

Thus, SDG predicts that cosmic acceleration is not the result of
inserting an a priori constant A. Instead, acceleration is a phase in
which the expansion rate outpaces the self-gravity of the background
density, producing 3 < 0 and therefore q <O0.

Emergent Time and Gravitational Redshift

In GR, gravitational time dilation and redshift are attributed to
differences in the g, component of the metric: clocks deeper in a
gravitational potential run slower. In SDG, there is no fundamental t
coordinate. Process rates depend on p directly.

Two observers at different p occupy different “density depths.” A
process with frequency v at one depth will appear redshifted relative
to the same process at another depth. Observable gravitational
redshift is therefore encoded as a difference in p, not a difference in
coordinate time. This reproduces gravitational redshift and GPS
clock-rate offsets in a way that is operationally equivalent to GR, but
conceptually replaces “curved time” with “layered density” [2].

At the macroscopic level, the arrow of time arises because
stratified p-configurations tend to relax and redistribute, smoothing
initially steep gradients. This relaxation is associated with entropy
production. Observers parametrize this monotonic evolution with a
scalar parameter they call t:

dt « F(p)dA,

where dr is the locally measured proper interval, dA is a monotone
evolution parameter tracking the relaxation of p and F(p) encodes
how fast physical processes occur at a given density depth. The
existence of a global arrow of time is then understood as a
manifestation of global entropy increase via p-relaxation, not as an

intrinsic direction of a fundamental t coordinate. In this sense SDG
gives a geometric—thermodynamic basis for macroscopic time.

Entropy functional and the macroscopic arrow

A concrete entropy functional that increases under p-relaxation is

2
@

S[p] = _fz d3X\/)/

with y the determinant of the induced three-metric on a constant-
p slice and p* a reference scale. Under the diffusion-like part of (18)
(the O, term) one finds

o = [y V@) @) 2 0,

So is nondecreasing along the monotone parameter A that orders
relaxation. Clocks realize dt F(p) dA (Sec. 8), so the observed arrow
of time corresponds to the monotonic increase of as layered density
stratification smooths. This furnishes the thermodynamic
underpinning of macroscopic time in SDG.

Static, Spherically Symmetric Configurations and
Absence of Singularities

One of the most severe conceptual problems in GR is the
existence of curvature singularities: for Schwarzschild black holes,
curvature invariants diverge as r = 0; in FRW cosmology, curvature
diverges at the Big Bang. SDG avoids these singularities by
construction.

Consider a static, spherically symmetric configuration with p =

p(r), where r=.x?+y%+z%2 Adopt a static, spherically
symmetric spatial metric of the form

ds? = A(r)dr? + r2dQ? + f(p) dp?, (93)

with dQ? the standard two-sphere line element. We treat f(p) as
smooth and positive. We assume p(r) is monotone nonincreasing and
differentiable.

Full radial equations

For the ansatz ds? = A(r)dr? + r2dQ? + f(p)dp? with p =
p(r), the independent components of (12) reduce to two coupled
ODEs (details omitted for length; provided in the supplementary
derivation file):

d d "d l; 1
S22 - 22 =Lp+ 000" 1 (o). (94)
A 1-A7' _ ,d%p , ,
=254 Bp + 0((0)2 £ (0)). (%)

: d . ..
Regularity at r = 0 enforces d—’r’|r:0 =0, finite pc and finite
curvature scalars. The near-center series solution is p(r) =

p:[1(B/12)r? + 0(r*)], consistent with the core result used in Sec.
9 and with the Bianchi closure.

Inserting (93) and p = p(r) into (11) produces coupled ODEs
for A(r) and p(r). Focusing on the radial component of the 2V;V;p
term, one obtains schematically

1d_odp

B
rzdrr dr_zp’ (96)
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where we have written the leading radial structure of V;V;p. A
more detailed calculation keeps all A(r)-dependent terms, but (96)
captures the key point: p is governed by a second-order equation
which is regular at r = 0.

The near-center solution to (96) is

~pe|1=Lr2 400 97
p(r) = pc[1—£r2+00%)|, @)
where p. is a finite central density. The derivatives behave as

d d? B
ﬁ lr=0 = O'd__rg lr=0 = — ch'

which are finite. Because curvature in SDG is sourced by 2V;V;p
and fpg;;, both of which remain finite at r = 0 for the solution (97),
the curvature invariants built from G;; remain finite at r = 0. There is
no divergent curvature core.

This point is fundamental: SDG does not require a singular center
to support a massive compact object. Instead, it predicts a high-
density, finite-curvature core. The same mechanism applies to the
early universe: An initially high but finite p with smooth stratification
does not force divergent curvature. The “Big Bang singularity” is
replaced by a finite, high-density initial configuration.

Thus, SDG provides classical non-singular solutions already at
the level of the field equations, without appealing to quantum gravity
or Planck-scale corrections. This addresses one of the key conceptual
gaps in GR.

Future Work

The present work establishes the geometric foundations of
Stratified Density Gravity (SDG), derives its field equations, recovers
the Newtonian limit and standard weak-field phenomenology and
connects its large-scale sector to cosmological observables. Several
developments now follow naturally; these represent concrete, testable
predictions and a roadmap for continuing the theory. As shown in Sec.
6, SDG reproduces all presently verified weak-field tests of GR,
including redshift, light deflection and gravitational-wave
propagation.

Full static, spherically symmetric solutions

In Sec. 12 we showed that a static, spherically symmetric
configuration with p = p(r) admits a regular, finite-density core
and no curvature singularity. The next step is to solve the full SDG
field equations

Gij =2ViVip + Bpgij

for the general spherically symmetric ansatz (93) without
assuming that A(r) is slowly varying.

Near-core expansions and regularity

A key structural prediction of SDG is that static, spherically
symmetric configurations possess a regular, finite-curvature core at r
= 0. This follows directly from the field equation

Gij = 2ViVip + Bpgij, (98)

together with spherical symmetry. We adopt the standard static
line element

ds? = —A(r)c?dt? + B(r)dr? + r2dQ?, (99)
with p = p(r). Regularity at the center requires:

A(r) =Ag + A*r2 +0(r*), B(r)=1+B*r*+
o), p() =pc+p°r*+ ("),

with finite constants A, > 0 and p. > 0 and with the conditions
p'(0) =0,

ensuring a smooth origin in curvature coordinates. Substituting
(100) into the field equation (98) and equating coefficients of like
powers of r yields algebraic relations among

(100)

A(0) =0, B(0) = 1,

{A,, B,, p,}. At leading nontrivial order, one finds

py = — lﬁz Per (101)
which shows that the density coordinate decreases quadratically
away from the center. The remaining coefficients are determined as
1 1
A = 5 Bpc + ”Geffpc)' B, = % Bpc — 8”Geffp6)f
(102)

where G,y denotes the effective Newtonian coupling appearing
in the weak-field limit (o = 2). These relations show that all second-
order coefficients are fixed once p, is specified: the center has only
one physical free parameter.

Finiteness of curvature invariants

The Ricci scalar R, Kretschmann scalar K = Rgj,cqR*°¢ and
Ricci contraction R4, R* computed from (99) remain finite at r = 0.
Using (100) and (102) one finds

R(0) =3Bp. +0(r?), (103)
K(0) = Ci(Bpc) +0(r?), (104)
RapR™(0) = C2(Bpc)? + 0(r?), (105)

for dimensionless constants C;, C, determined by the algebraic
structure of the tensor decomposition. Thus, the central curvature is
set entirely by the product Sp., demon-strating that SDG replaces the
classical Schwarzschild singularity with a finite-curvature core whose
scale is controlled by .

Physical degrees of freedom

The expansion (100) shows that only the central value p,. labels
distinct solutions; the coefficient A, may be absorbed into a rescaling
of the time coordinate and B(0) = 1 is required for regularity.
Consequently, the SDG static solution space is one-dimensional at the
center, analogous to specifying the central density of a stellar
configuration. When the ODE system obtained from (98) is integrated
outward, asymptotic flatness fixes the mass parameter M at large r.
Matching the core to the asymptotic region then imposes a nontrivial
relation between M and p., producing a unique SDG analog of a
black-hole/compact-object profile with a nonsingular center.
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Global structure and mass—core matching

The near-core analysis shows that static SDG configurations are
specified locally by a single physical parameter, the central value p..
To understand how this parameter determines global properties, we
integrate the full SDG field equations (98) outward from the regular
center using the expansions (100)—(102) as initial data. Asymptotic
flatness requires

2GM
c?r

2GM
c2r

A) 251 -2M 4 0r2), B(r) =51+ 21 4 0(r2),

which defines the physical ADM mass M.

Preliminary numerical integrations of the resulting ODE system
(not shown here) and analytic considerations based on monotonicity
of p(ry suggest the following qualitative behavior:

1. For each choice of p. > 0, the initial-value problem defined
at r = 0 appears to extend smoothly to arbitrarily large r,
yielding solutions that can approach asymptotic flatness.

2. The asymptotic mass M (p.) increases monotonically with
p. in all examples examined:

aM

—>0

(observed numerically).
dpc

This indicates that the SDG family of static configurations forms
a one-parameter sequence analogous to relativistic stellar models.

3. In all integrated cases p(- decreases smoothly and
monotonically from its central value toward p — 0 at large
r, with no internal turning point or shell structure.

Compactness and absence of horizons
The integrated solutions consistently satisfy

A(r) >0 forallr,

indicating the absence of event horizons. Instead, the
configuration contains a finite-curvature core whose scale is
determined by the combination Bp.. The compactness

26M(r)
c?r

c(r) =

typically reaches a maximum at some radius r, but remains
strictly below unity in all cases investigated. This defines an SDG
analog of the Buchdahl bound,

C(r) < Crax(B), Crmax(B) < 1,
with €4, increasing as the stratification parameter 3 increases.
Observational significance

These preliminary findings support the physical picture of SDG
compact objects as a regular, horizonless, one-parameter family
characterized by p.. Their distinct internal structure implies modified
quasi-normal mode spectra, potential gravitational-wave echoes and
altered shadow radii compared to GR black holes. These signatures
provide concrete strong-field tests of SDG.

Observational significance. Because p. uniquely determines M,
the SDG family of static ultracompact objects is one-dimensional.
Each object has:

e  Afinite curvature plateau at r = 0 determined by Bp.,

e A smooth transition to an exterior Schwarzschild-like
region,

e A maximum achievable compactness governed entirely by

B.

These properties distinguish SDG compact objects from both
neutron stars and GR black holes. They imply modified quasi-normal
mode spectra, potential echoes in post-merger gravitational
waveforms and altered shadow radii. Each of these effects scales
predictably with p. and B, providing concrete strong-field tests of
SDG.

The program is:

1. Derive the coupled ODEs for A(r) and p(r) from the full

2. Impose regularity at » = 0: finite p.,dp/dr = 0, finite
curvature scalars.

3. Impose asymptotic matching to an exterior region in which

p(r) — 0.

This yields the SDG analog of a “black-hole”/compact-object
solution. Two observational targets follow:

e the redshift between the core and a distant observer (in GR,
this diverges at an event horizon);

e the quasi-normal mode / ringdown frequency spectrum after
perturbation.

Both are directly testable with gravitational-wave observations of
compact mergers and with horizon-scale imaging of supermassive
compact objects.

Gravitational-wave emission and ringdown

Since SDG modifies the internal structure of compact objects but
leaves the weak-field, far-zone limit consistent with Newtonian/GR
phenomenology, a key next step is to analyze radiation:

1. Linearize (90) about a weakly curved background to identify
the propagating tensor degrees of freedom and confirm that
gravitational radiation exists with the same leading 1/r fall-
off as in GR.

2. Compute the effective stress-energy flux of these
perturbations and test whether inspiral luminosities match
GR to leading order.

3. Evaluate post-merger ringdown for the finite-core objects in
(i). If the interior is non-singular, the boundary conditions
for perturbations differ from a classical event horizon and
could generate echoes or shifted modes.

Such deviations are observationally accessible to current and
next-generation gravitational- wave detectors.

Cosmological background evolution and f(z)

Equation (45) implies that B is determined by H and p,,. Since
both depend on epoch,

B = B(2.

The next task is to evolve a(A), HQA), ppg(1) and B(R) self-
consistently in an FRW background using SDG rather than GR.
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A cosmological null test for SDG
In the homogeneous FRW sector the SDG field equation,

Guv = ZVqupbg +prggpw (106)

reduces to modified Friedmann equations that may be written in
GR form by identifying an effective dark-energy component sourced
by py,g. For a spatially flat universe and matter density p.,,)(z), the
00-component of (106) yields

8mG

3H?(2) = —5 pm(2) — Bppg(2)c? +4,(2), (107)

where A,(z) contains contributions from p,, and pyg arising
from the term 2V, V,vp,,,. In Sec. 6, Eq. (24), we showed that in the

quasi-static regime relevant for late-time cosmology these derivative
terms satisfy a constraint that allows (107) to be written as

8nG

3H2(Z) = C_zpm(z) - ﬂpbg(z)czﬁ (108)

which plays the role of the SDG Friedmann equation. Solving
(108) for B gives the observationally reconstructible quantity

81G
T pm(2)-3H%(2)

Pbg(z)cz

ﬂabs (2) = (109)

SDG prediction

Bops (z) must be constant. In GR the Friedmann equation contains
a fundamental constant A. In SDG this role is played instead by the
combination —fpyg.

Because B is a fixed coupling constant of the theory, it must
satisfy

Bops (2) = constant, (110)

for all redshifts where the SDG-FRW reduction applies. Any
statistically significant evolution of p,,s(z) extracted from
cosmological data would therefore falsify this sector of SDG.

Equation (109) also shows that SDG imposes a consistency
condition relating the background density coordinate p,4(z) to the
measured expansion rate H(z):

G
S Pm(2)-3H2(2)

oo (111)

Pbg (2) =

Thus, the homogeneous density field p, 4 is not an additional free
function but is fully determined—up to the constant —by the matter
evolution and the observed Hubble expansion.

Interpretation as an effective dark-energy fluid

Writing (108) in the GR form,

8nG

3H2(2) = 22 [pn(2) + Pegr (2], (112)

identifies the SDG-induced effective dark-energy density as
Bc?
Perr(2) = = g=Ppg(2)- (113)

Therefore, the ratio

Perr(2) _ —Bc?

PbgZ) BTG (114)

must likewise remain constant. This constitutes a second null test
for SDG, equivalent to (110).

Consequences

Equations (109)—(111) convert SDG into a predictive
cosmological framework: given H, and p,,(z) from observations,
SDG uniquely determines ppq(z) and imposes a stringent
requirement that 8,55 (z) remain constant. This contrasts with generic
dark-energy models in which the equation-of-state parameter w(z)
may be chosen freely. In SDG the background evolution of the
density coordinate and the cosmic acceleration history are both fixed
by a single coupling B, providing a clear set of observational null tests
distinguishing SDG from ACDM.

This produces:

1. an SDG analog of the Friedmann equation, where Bpyg
replaces A;

2. a predicted expansion history H(z) and deceleration
parameter q(z) via (58);

3. a predicted effective equation-of-state parameter w,,,(z)
for the large-scale background.

In ACDM, w(z) = —1 is constant at late times [5-7]. In SDG,
Werr(2) can evolve because B evolves. Confronting H (z), supernova
luminosity distances, baryon acoustic oscillations and CMB-inferred
expansion history with this evolving-p background is a direct
observational test of SDG against ACDM.

Linear perturbations and structure growth

Beyond the background expansion, the growth of
inhomogeneities (galaxy clustering, weak lensing) is sensitive to the
law of gravity. SDG predicts that curvature responds directly to
spatial second derivatives of p through 2V;V;p, while the
homogeneous background contributes through Spg;;.

Linear perturbations and the SDG growth equation

To assess the observational viability of SDG at the level of cosmic
structure, we consider scalar perturbations around the homogeneous
background discussed in Sec. 11.3. Working in Newtonian gauge,

ds? = —(1+ 2®)c%dt? + a?(r)(1 — 2¥)dX?, (115)

and perturbing the density coordinate as p = pj,q (1) + 8p(7,x7),
the SDG field equation

Guv = ZVqup + .Bpguv (116)

produces, at linear order, a modified Poisson equation for the
potential ®. The spatial trace of the (i, j) components yields

2

— T3 = 4nGOpy + 5 (BSp — 28p — 6Hp)

2

117)

where over dots denote derivatives with respect to proper time ©
and where matter has been assumed pressure less.
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Quasi-static sub-horizon limit

For modes with comoving wavenumber k > aH, satisfying k the
time derivatives of §p are suppressed relative to spatial derivatives
and the §p and Hp terms in (117) may be neglected. Equation (117)
then simplifies to

Vi)
- = AnGorr(2) 6pm, (118)
where the effective gravitational coupling is
5
Gerr(2) =G (1+ L é) (119)

Because p = @/c? in the weak-field limit, the perturbations
satisfy 6p = 8®/c? and the Poisson equation self-consistently
fixes 6p/8py, 1o be a scale-independent function of the background.
One finds

Gepr(2) = G [1+ 22222

3H2(z)

(120)

Thus, SDG predicts a redshift-dependent but scale-independent
modification of effective gravitational clustering strength.

Growth of matter perturbations

The matter density contrast § = &p,,/pm Obeys, in the quasi-
static regime, the standard continuity and Euler equations. Combining
these with (118) yields the SDG growth equation

8+ 2H6 — 4nGeopp(2)pmd = 0. (121)

Introducing the growth function f = d Iné/d Inaand using § =
Hf§, equation (121) becomes

o o HY,_3 Boby(?)
dina +Hfo+ (2 +H2)f - zﬂm(z) [1 + 3H%(z) )’

(122)
where Q.,(z) = 8nGp,,/(3H?).
Prediction for the SDG growth index

In GR+ACDM the growth rate is well approximated by f =~ QF
with y,cpm = 0.55. In SDG the modification G — Gz shifts

the right-hand side of (122). Writing the SDG correction as

Bppg(2)
@) = T (123)
. ySDG . . .
and expanding f = Q" to first order in € yields
3(1-€) 3 3
Ysp6 =7 ge —s T35 € +0(€e?), (124)

where €(z) is determined entirely by the background SDG
cosmology. Since €(z) is positive whenever fp,, < 0 drives

acceleration, SDG predicts
ySDG > 0.55 (accelerating universe). (125)

This constitutes a direct, parameter-free observational signature
of SDG in linear structure formation.

1. Write p(X) = pyg + 8p(¥) and linearize (90) around the
homogeneous FRW background.

2. Derive the linear evolution equation for §p in Fourier space.
In GR this yields the standard growth law for matter
perturbations &, (k, ).

3. Determine whether SDG predicts a modified growth rate,
fog(z), that differs from GR+ACDM, especially on large
scales where f is important.

This connects SDG to cosmological large-scale structure data and
redshift-space distortion measurements.

Precision redshift and clock-rate tests

Section 10 established that gravitational redshift measurements
uniquely fix the SDG clock factor to

da

dr = :
gl

ensuring exact agreement with general relativity in all presently
tested weak-field regimes. Thus, the fundamental structure of time
dilation in SDG is already determined.

A natural next step is to investigate whether SDG predicts higher-
order or strong-field deviations from the GR redshift law. Such
deviations would arise in regimes where the density coordinate varies
rapidly or where curvature gradients exceed the weak-field
expansion. These effects cannot be probed by Solar System tests but
become relevant in astrophysical settings such as:

e  Gravitational redshift from neutron-star surfaces or white
dwarfs,

e Pulsar timing arrays sensitive to higher-order time-delay
corrections,

e  Precision atomic
environments,

e  Redshift—radius relations near the finite-curvature SDG core
described in Sec. 11.1.

clocks in variable gravitational

Because SDG moadifies the interior structure of compact objects
without introducing horizons, the gravitational potential in the near-
core region differs from that of a Schwarzschild black hole. This
opens the possibility that extreme redshift measurements in the
strong-field regime—such as spectroscopy of accretion flows, pulsar
timing near supermassive objects, or photon ring observables—could
reveal measurable departures from GR.

These precision tests provide a direct path for distinguishing SDG
from GR beyond the linear regime, complementing the strong-field
predictions developed in Sec. 11.1 and the cosmological predictions
in Secs. 11.3-11.4.

Bianchi identity and conservation in SDG

In GR, the Bianchi identity V*G,, = 0 implies local covariant
conservation of stress-energy, V*T,,, = 0. In SDG, the right-hand

side of (90) is built entirely from p and its derivatives. Applying V¢ to
both sides of

Gij = 2ViVip + Bpgi;
and using V'G;; = 0 yields

0 = 20'WV;p + V' (Bpgy))- (126)
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This  relation enforces consistency between  spatial
inhomogeneities in p and the homogeneous background sector fSp.
Working out (126) in homogeneous FRW and in the static, spherically
symmetric case will produce: (a) an SDG analogue of local energy
conservation and (b) potentially, an explicit evolution equation for {3
itself. In particular, it will determine whether 3 can ever be strictly
constant, or must evolve dynamically with p, ;.

High-density early-universe regime

In GR, the Big Bang is a singularity. In SDG, the early universe
is modeled as a high-but-finite p;,;; with smooth stratification. The
next steps are:

e Assume an initially nearly homogeneous configuration p =
Pinic — €(X), with pinit large but finite.

e  Evolve (90) forward in the monotone evolution parameter A
to see how small perturbations €(xX) source expansion and
seed structure.

e  Determine whether SDG produces a nearly scale-invariant
primordial spectrum similar to inflation, or predicts distinct
features (e.g. large-scale suppression).

If SDG implies a specific large-scale deviation in the Cosmic
Microwave Background (CMB) or matter power spectrum, that
constitutes a fossil signature of the non-singular origin.

Direct observational discriminants: SDG vs. GR+ACDM

The two most immediate and falsifiable differences between SDG
and standard GR+ACDM are:

Evolution of the acceleration parameter

In GR+ACDM, late-time acceleration is driven by a constant
cosmological constant A and the deceleration parameter g(z) evolves
in a very specific way: As matter dilutes, gq(z) asymptotes to a
constant negative value set by A and the effective equation-of-state
parameter of dark energy is w(z) = 1 at all sufficiently late times [5-
7].

In SDG, the cosmic acceleration is governed by the background-
density coupling B, which is not a fundamental constant but is
determined by

g =8nG — 2=

)
Pbg

and by its direct relation to q,

8nG
b=159
This implies:

e SDG predicts that B (and therefore the “effective dark
energy”) can evolve with redshift z through the evolution of
H(z) and ppg(2). In particular, B(z) need not be constant,
even at late times.

e  Consequently, SDG predicts that the deceleration parameter
q(z) (and the effective wesr(z) of the accelerating
component) is not forced to be redshift-independent at low
redshift.

Therefore, the first direct observational discriminator is:

Test A: reconstruct q(z) and H(z) from distance—redshift relations
(standard candles, e.g. Type la supernovae) and standard rulers
(baryon acoustic oscillations) and check whether q(z) is consistent
with a single, redshift-independent effective A (GR+ACDM), or
whether it shows statistically significant redshift dependence in the
effective acceleration sector (SDG).

In other words:

GR + ACDM: % ~ 0 at late z,
expected.

SDG: % # 0 allowed and

Any robust detection of a non-zero % (or equivalently, a late-time

werr(z) that deviates from -1 at low z without adding extra dark-
energy fields) would favour SDG over GR+ACDM. Conversely,
extremely tight constraints consistent with a constant q(z) and
constant w(z) = —1 at late times would strongly disfavor SDG in
its simplest form.

This is a clean, already-measurable discriminator. It uses only
background cosmology, not perturbations and it connects directly to
B as fixed in Eq. (45).

Finite-core compact objects vs. curvature singularities

In GR, the classical Schwarzschild solution has a curvature
singularity at r = 0 for any mass M > 0. The interior solution of a
sufficiently compact object becomes singular in finite proper time.

In SDG, for a static spherically symmetric configuration with
p = p(r), the radial structure equation

1d/( ,dp\ _B

r2dr (7’ dr) T2 p

admits a regular near-center solution
~p.[1-L£r2 +0(r 0

p(r) = p. ot ®f,r-0,

with finite p, and finite curvature. The key point is that p does not
diverge, its derivatives remain finite at r = 0 and therefore the
curvature built from 2V;V;, + Bpg;; also remains finite. SDG
therefore predicts that ultra-compact objects are not singular at r = 0;
instead, they possess a finite-density core.

This qualitative interior difference leads to quantitative, in-
principle observable consequences:

e The “surface” or trapping region need not be an event
horizon in the GR sense. As a result, late-time ringdown after
merger may exhibit weak, delayed “echoes” due to partial
reflections from the finite core rather than perfect absorption
at an event horizon.

e  The multipole structure of the exterior field at radii just
outside the would-be horizon can differ slightly from the
Kerr/Schwarzschild expectations of GR, because the
matching conditions at small r are different if there is no true
singularity.

Therefore, the second direct observational discriminator is:

Test B: Search for horizon-scale deviations from pure
Kerr/Schwarzschild behaviour in (a) ringdown portions of
gravitational-wave signals from compact mergers and (b) very long
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baseline interferometry (EHT-like) images of supermassive compact
objects. Evidence of post-merger echoes or of a non-Kerr near-
horizon structure would support SDG’s finite-core prediction.
Persistent null results with increasing sensitivity would constrain
SDG’s parameter freedom in the strong-field regime.

Together, Tests A and B distinguish SDG from GR+ACDM using
real, current observables: One on cosmological scales (background
expansion history) and one on strong-field astrophysical scales
(compact objects).

Summary of testability

The essential point is that SDG is not only a geometric
reinterpretation,; it is predictive and falsifiable:

e  Strong-gravity structure (finite-core compact objects and
horizon-scale physics);

e  Gravitational waveforms and ringdown;

e  Cosmological background evolution via B(z);

e  Structure growth and large-scale clustering;

e Precision redshift and clock-rate tests in gravitational fields;

e  Early-universe initial conditions without a curvature
singularity.

Each of these pathways’ links SDG directly to observations. The
immediate priorities are to obtain the full spherically symmetric
interior+exterior solution and to compute PB(z) and q(z) for
cosmological data comparison, as these will provide the most direct
tests against GR+ACDM.

In summary, SDG differs from GR+ACDM in two conceptually
central ways which are also observationally testable. First, SDG
replaces the fundamental cosmological constant A with a
background-density coupling B (Eq. (45)) that is determined by
(H, ppg,q) and may evolve with redshift. This makes late-time
acceleration a dynamical phase property of the cosmic density field
rather than the consequence of an inserted constant vacuum energy.
Second, SDG replaces curvature singularities with finite-density,
finite-curvature cores in static, spherically symmetric solutions (Sec.
10), implying that ultra-compact objects are not required to contain a
classical singularity at r = 0. These two differences lead directly to
observational discriminants: Possible evolution in $(z) inferred from
background cosmology and possible horizon-scale and ringdown
deviations from Kerr/Schwarzschild behaviour in compact merger
remnants. In this sense SDG is not only a conceptual completion of
GR in regimes where GR is structurally incomplete (cosmological
constant, singularities, origin of macroscopic time), but also a
framework with concrete, falsifiable predictions.

From equations to data

Appendices A-C provide a turn-key reconstruction of f(z) from
SNe la, BAO and cosmic-chronometer data, delivering a direct
discriminator between SDG (allowing dB/dz # 0 at late times) and
GR+ACDM (predicting df/dz #+ 0). Appendix D gives the
complementary strong-field program (QNMs, echoes and EHT
shadows) sensitive to SDG’s finite-density cores. Together, these
enable immediate confrontation of SDG with observations within the
same statistical workflows used for GR+ACDM.

Discussion and Outlook

In this work we have developed a geometric extension of general
relativity in which gravitational dynamics are governed by a single
stratification field p rather than by multiple independent energy
components. The resulting framework preserves the geometric
structure of Einstein gravity while providing a unified description of
both local gravitational phenomena and large-scale cosmic
acceleration.

The central result of the theory is that the spacetime curvature can
be decomposed into two geometric contributions: a stratified
component associated with spatial inhomogeneities and a
homogeneous component associated with the background expansion.
This decomposition arises naturally from the field equations and does
not require the introduction of new matter species or exotic stress—
energy components. In this sense, cosmic acceleration emerges as a
geometric effect rather than as a consequence of vacuum energy.

A key outcome of the analysis is that the observed cosmological
parameters, including the present-day values of the Hubble constant
and matter density fraction, admit a direct geometric interpretation.
The empirical partition between matter and accelerated expansion
corresponds to a partition of spacetime curvature between the
stratified and homogeneous sectors of the theory. This
reinterpretation removes the conceptual distinction between “matter”
and “dark energy” as independent physical substances.

The theory remains consistent with all existing experimental and
observational constraints. In particular, it reproduces standard general
relativity on solar system and astrophysical scales, while predicting
only mild, scale-dependent deviations on cosmological scales. These
deviations are controlled by a single parameter and are naturally
suppressed except near the Hubble scale, ensuring compatibility with
current data.

Crucially, the framework is predictive. The same geometric
structure that gives rise to cosmic acceleration also determines the
scale and magnitude of deviations from general relativity in large-
scale structure formation and gravitational lensing. This provides a
clear pathway for falsification through future surveys and precision
cosmology.

In summary, Stratified Density Gravity offers a self-consistent,
geometrically motivated extension of general relativity that unifies
cosmic acceleration and structure formation within a single
framework. It preserves all tested limits of general relativity while
providing a natural explanation for late-time cosmic acceleration
without invoking additional dark components. As such, it provides a
compelling and testable alternative framework for gravitational
physics on cosmological scales.

Appendix A: Methods for Test A (Background
Expansion Reconstruction of f§(z))

This appendix outlines an explicit, data-driven procedure for
reconstructing the SDG background-density coupling B(z) from late-
time cosmological observables. The goal is to provide a direct,
falsifiable test of SDG against GR+ACDM using existing types of
data (supernovae, BAO and cosmic chronometers), without assuming
any particular microphysical model for dark energy.
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Observables and inputs
The reconstruction uses two standard background quantities:

»  The Hubble expansion rate H(z) as a function of redshift. In
practice H(z) can be obtained from:

e Baryon Acoustic Oscillation (BAO) measurements of the
radial BAO scale, which directly constrain H(z) in redshift
bins.

e “Cosmic chronometers”: differential galaxy aging, which
estimates dt/dz for passively evolving galaxies and
therefore H(z) = —(1 + z)~ldz/dt.

e Joint supernova + BAO fits (where supernovae constrain
relative distances and BAO provides an absolute ruler).

> The homogeneous background density p,q(z), which in
late-time cosmology is normally modeled in ACDM as

pbg(z) = pm,O(l + 2)3 +pa

where py, ¢ is today’s matter density (baryons + dark matter) and
pa is the dark-energy density inferred from fits. For the purpose of
reconstruction, png(z) should be interpreted operationally as “the
smooth background energy density that sources the large-scale
expansion.” In SDG, this is precisely the pyg that appears in Eq. (45).

In practice, ppo is taken from standard parameter inferences
(6.9. Qo = 81G Py o/ (3H7))

Using low-redshift data and CMB-informed H,, while p, is
treated as a phenomenological late-time constant in the standard fit.
SDG does not assume that p, is a fundamental constant of nature;
instead, pg(2) is treated as the empirical smooth background density
inferred from data in the same way.

Reconstructing (z)
Given H(z) and pyg(2), we compute 5 (z) using Eq. (45),

B(2) = 8nG — &

Prg@) (127)

This is a direct algebraic map; no differential equations are
solved.

Step-by-step procedure:

»  Choose a set of redshift bins {z;} covering, e.g., 0 < z <
2.

»  For each bin z;, use BAO / chronometer / SN data to infer
H(z;) with uncertainties.

> For each z;, construct png(z;) from the best-fit smooth
background model at that redshift. Concretely:
e Adopt p,,,,0 from parameter inference,
e  propagate (1 + z;)3 for the matter sector,
e include any smooth component typically attributed to

“dark energy” at that z; in standard fits.

The point is not to prejudge SDG, but to use the same
homogeneous background energy density a ACDM analyst would
assign to drive H(z).

> Insert H(z;) and py,g(z;) into Eq. (127) to obtain 5(z;) and
its uncertainty via standard error propagation.
»  Plot §(z) versus z.

Statistical discriminator

The null hypothesis associated with GR+ACDM is that late-time
acceleration is sourced by a constant A. In that case, the effective
“dark-energy” sector is redshift-independent with equation-of-state
parameter w(z) =~ —1 at low z [5-7]. This implies that the
combination playing the role of a curvature-driving vacuum term is
constant. In SDG language, that corresponds to § behaving effectively
as a constant at late times.

By contrast, in SDG B is not assumed constant; instead, we have

3H(z)?
Pbg(z)’

B(z) = 8nG —

and both H(z) and pyg(2) are allowed to evolve self-consistently
with redshift. Therefore, SDG allows % # 0 even at low z.

The discriminator is:

%2 |1 = 0 (consistent with GR+ACDM), 2 |, = 0 (supports
SDG). (128)

Operationally, one fits B(z) to a constant across the low-z range
and evaluates y2/d.o.f. for that constant fit. A statistically significant
deviation from constancy (beyond observational uncertainties and
known systematics) indicates that the late-time acceleration sector is
evolving, which in GR requires going beyond a pure constant A. In
SDG, such evolution is natural because B is tied directly to H(z) and

pbg(z)-
Relation to the deceleration parameter q(z)

As derived in Eq. (58), B and the deceleration parameter q satisfy

ﬂ(Z) _  8nG

T 1+q(2)

q(2). (129)

This means the same test can be phrased using q(z) alone,
without ppg(2), if one reconstructs q(z) directly from H(z) via

din H(z)

q(z) =-1- din(l+2)

Thus, there are two equivalent observational strategies:

Strategy 1 (background density route): infer both H(z) and py,¢(2)
and compute B(z) from (127).

Strategy 2 (kinematic route): infer H(z) alone, differentiate it to
get q(z), then obtain 8 (z) from (129).

Strategy 2 is attractive because it uses only expansion kinematics
and does not assume any decomposition of py, into “matter” and
“dark energy.” It therefore minimizes model bias.

Interpretation

In GR+ACDM, the late-time accelerating component is described
by a constant A and is therefore strictly redshift-independent. In SDG,
the large-scale curvature-driving sector is encoded in 8(z), which is
determined by H(z) and q(z) and can in general vary with epoch. A
statistically significant detection ofj—f # 0 at low redshift, in fits that

otherwise pass standard systematics checks, would support SDG over
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GR+ACDM. Conversely, tight constraints consistent with constant §
at late times would impose quantitative bounds on SDG’s
cosmological sector.

This procedure demonstrates that SDG is not merely a geometric
reinterpretation of gravity. It yields an explicitly testable, data-level
discriminator using only late-time background cosmology, with no
need to assume new particle species or additional scalar fields.

Appendix B: Illustrative Reconstruction of (z) from
Synthetic Datasets

In Appendix A we described how to reconstruct B(z) directly
from late-time expansion data. Here we provide an explicit worked
illustration using two controlled synthetic universes. The purpose of
this appendix is not to claim a fit to current data, but to demonstrate
how an observer would decide between GR+ACDM and SDG using
exactly the procedure of Appendix A.

We consider two mock cases:
Case 1 (GR+ACDM-like)

We assume a spatially flat background with present-day Hubble
parameter H, =70 km s~ Mpc™!, matter density parameter
Qo = 0.3 and a constant dark-energy component with w = —1. In
such a model

H%(2) = H§ Qmo(1 + 2)* + (1 = Qo) ,
and the homogeneous background density is taken to be
Pbg () = pcrit,OQm,O(l + Z)3 + pcrit,o(l - Qm,o)v

where p.ic o = 3HZ/(87G) is the present critical density. This is
a standard ACDM background. We then compute B(z) using Eqg.
(127). Because the “dark energy” term is exactly constant here, 5 (z)
comes out approximately constant for z < 1.

Case 2 (SDG-like)

We assume the same H, and Q,, oat z = 0, but we now let the
acceleration sector evolve mildly with redshift, mimicking an epoch-
dependent background-density coupling. Concretely, we take

H2(2) = H2[Qmo(1 + 2)> + 1 — Qo) (1 + €2)],

with a small drift parameter € = 0.2 for illustration. Operationally,
this looks like a slightly evolving “dark energy.” We then define
Pog(2) as the smooth background density that sources this H(z), i.e.

3H2(z)
Pbg (2) = Py
which is exactly what an observer would infer if they assumed

only homogeneity and isotropy, not a fundamental constant A. We
then compute £ (z) via Eq. (127).

Mock reconstruction table

For each case, we choose representative late-time redshifts z =
{0.0, 0.5, 1.0} and evaluate H(z), ppg(2) and 5(z). We also attach
illustrative 1o uncertainties at the few-percent level, comparable to
current low-z BAO+SN constraints.

Table 1 shows the result. (All values are schematic; units are
chosen consistently so that f is reported in curvature units. The
qualitative behaviour is the key point.)

In Case 1 (GR+ACDM-like), the reconstructed P(z) is statistically
consistent with a constant B, within the assumed 8B error bars. This
matches the GR+ACDM expectation that the late-time acceleration is
sourced by a constant A.

| z =0.0 z=0.5 z =10
Case 1: GR+ACDM-like (constant A)
H(2) 70 91 123
Pog(2) 1 173 3.2
B(2) BO By £ 6B B, #6B
Case 2: SDG-like (mildly evolving acceleration)
H(2) 70 95 135
Pg (2) 1 1.9 3.8
B(2) By B, +0.10 B, +0.25

Table 1: Illustrative reconstruction of B(z) from mock expansion-
rate data. Case 1 corresponds to a ACDM-like universe with a
constant vacuum component. Case 2 corresponds to an SDG-like
universe in which the effective acceleration sector drifts slowly with
red-shift, producing an evolving B (z). In Case 1, B(z) is statistically
consistent with a single value B, across 0 < z < 1. In Case 2, 8(2)
increases with redshift at the (10%) level over the same range, which
would appear observationally as dB = 0. Numbers shown are
schematic and for demonstration only; the point is that even a mild
redshift drift in the acceleration sector produces a detectable slope in

B(2).

In Case 2 (SDG-like), the same procedure returns as S(z) those
drifts with redshift, at roughly the 10-25% level out to z=1. Such a

trend corresponds observationally to % = 0. Within SDG this is
natural, because B is determined by H(z) and pyp (z) and can evolve.

In GR+ACDM, the same behaviour would force the introduction of
an explicitly evolving dark-energy sector beyond a constant A.

Interpretation

This exercise demonstrates how the 8(z) reconstruction acts as a
discriminator:

» If B(2) is statistically consistent with a constant across late
times, that is consistent with GR+ACDM.

» If B(z) shows any statistically significant redshift evolution
at low z using only background expansion data, that
behaviour supports SDG’s picture of a dynamical
background-density coupling and challenges GR+ACDM
unless new dark-energy degrees of freedom are added by
hand.

Because H(z) and q(z) are already measured, this analysis is
immediately applicable to real data.

Appendix C: Likelihood Pipeline for Observational
Reconstruction of 8(z)

Appendices A and B describe how to infer f(z) from background
expansion data and how to interpret its trend. Here we outline the
concrete likelihood analysis required to perform this reconstruction
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on real cosmological data. This establishes a direct statistical
comparison between SDG and GR+ACDM.

Data vector

The late-time (low-z) background expansion is constrained by
three core observational channels:

Type la supernovae (SNe la)

Provides measurements of the luminosity distance D, (z) upto z ~
1—2 from standardizable candles. Modern compilations (e.g.
Pantheon-like) report binned distance moduli p(z,) with associated
covariance matrices.

Baryon Acoustic Oscillations (BAO)

Provides measurements of the angular diameter distance D,(z)
and/or the Hubble rate H(z) through the BAO scale in galaxy
clustering. Radial BAO directly constrains H(z) in discrete redshift
bins, while transverse BAO constrains D,(z). Large-scale structure
surveys typically publish H(z;), D,(z;) and a covariance matrix for
those points.

Cosmic chronometers

Provides direct, nearly model-independent estimates of H(z) at
specific redshifts via differential aging of passively evolving galaxies
(H(z) = —(1 + z)~t dz/dt). These are usually given as H"bs(zj) +
oH ; and can be incorporated as Gaussian likelihood terms.

Optionally, one may include a prior on H, (the z — 0 limit
of H(z)) or on Qp, from CMB+BAO fits. The point of SDG,
however, is that we do not assume a fundamental constant A. We only
assume homogeneity and isotropy at large scales, which is the same
assumption entering the standard background fits [5-7].

Model parameterization

To make the likelihood computable we choose a minimal
parameterization of the background expansion across the redshift
range of interest (0 Sz<2). There are two natural
parameterizations:

Parameterization A (GR+ACDM-like baseline)
Assume
H?(2) = HiQpmo(1 +2)° + (1 = Qo)

with free parameters HO, Q,, 5. This is the standard spatially flat
ACDM background. Here (z) is not an independent parameter; the
model implies B (z) const at low z through Eqg. (127).

Parameterization B (SDG-like). Allow a mild redshift
dependence in the acceleration sector while preserving matter dilution
at high z. A convenient two-parameter deformation is

H?%(z) = Hgﬂm,o(l +2)2%+ (1 - Qpo)E(2).
where

E(@)=1+¢€2z +e€,2%

Here €l and e, capture departures from a constant late-time
acceleration. Crucially, Z(z) is not interpreted as a new dark-energy
fluid with an imposed equation of state; instead, it is taken as a
phenomenological stand-in for the evolving background-density
coupling PB(z) that appears in SDG. The parameter set is now
{Ho,ﬂm‘o,fl,fz}

For each trial parameter set, we construct:

H(z) directly from the expression above,

comoving distance x(z) = [ dz'/H(z"),

angular diameter distance D, (z) = x(2)/(1 + 2),
luminosity distance D, (z) = (1 + 2)?D,(2),

Pog(2) = 3H?(2)/(8mG)

B(z) from Eq. (127),

and, if desired, q(z) fromq(z) = —=1—-d inH/d In(1 + z)
to cross-check Eq. (129).

YVVVYY VY

Likelihood construction

Once H(z), D4(z) and D, (z) are predicted for a given parameter
set, we evaluate the likelihood as follows:

Supernovae:
—2InLgy = AT CgtAp

where Ap is the vector of differences between observed and
predicted distance moduli pu(zy) = 5log1[D;(2)/10pc] and Cgy is
the published covariance matrix.

BAO:
—zlnLBAo = AdT CB_/:lloAd

where Ad is the vector of residuals between observed and
predicted  {H(z;),D4(z;)} (or related compressed BAO
combinations) and Cgpg is the BAO covariance matrix.

Cosmic chronometers:

2
[Hobs(zj)_Hmadel(zj)]
ZO’ZHJ'

—ZITLLCC = Z]
treating the chronometer points as independent Gaussians.
The total likelihood is

In Ltot . ln[/SN + lnLBAO + lnLCC +lIn Lprior:

where In L0 can impose broad physical priors such as Qp, o €
(0, 1) and Hy > 0.

Model comparison: ACDM consistency vs SDG-like
evolution

The likelihood analysis proceeds in two fits:

»  Fit Parameterization A (ACDM-like, no ;). This yields
best-fit Hy, Oy, ¢ and an implied “constant” §(z) with error
bars propagated from the covariance of the fitted
parameters.
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»  Fit Parameterization B (SDG-like, with €;, €, free). This
yields best-fit Hy, Q, o, €1, €2 and therefore a reconstructed
function P(z) with uncertainties.

We then ask two questions:
Is €,= €= 0 statistically allowed?

If yes, then current data are consistent with a constant acceleration
sector (i.e. GR+ACDM remains viable and simplest SDG is
constrained). If no, then the data prefer mild redshift evolution in the
acceleration sector, which in GR+ACDM cannot be accommodated
without adding an explicitly dynamical dark-energy component. In
SDG this evolution is expected, because B is determined by H (z) and
Pog(2) and can vary with epoch.

Is % at z < 1 consistent with zero within the ACDM fit and
significantly nonzero in the SDG-like fit?

This is the direct implementation of Eq. (128). A statistically
significant detection of % # 0 at late times rules out “pure constant-
A” and is naturally interpreted as evidence for SDG-like behaviour.

Formally, one can compare the two fits using standard
information criteria (AIC/BIC) or a Bayes factor. The important
physical point is that the observable being compared is not an exotic
new field: it is the redshift evolution of the effective background-
density coupling ((z) that sources acceleration.

Outcome and significance

This pipeline converts real low-redshift background cosmology
data (SNe la, BAO, cosmic chronometers) into a statistically testable
statement:

» “The effective acceleration sector is consistent with a
constant A” (favouring GR+ACDM),

» or “The effective acceleration sector must evolve with
redshift at late times” (supporting the SDG interpretation in
which B is a dynamical background-density coupling rather
than a fundamental constant).

In particular, because SDG ties B directly to (H, ppg, q) through
Egs. (127) and (129), any statistically significant late-time drift in f(z)
is not an optional extra assumption of SDG — it is a built-in
prediction. Conversely, if f(z) is observationally indistinguishable
from a constant across 0 < z < 1, then SDG is forced into a regime
where it mimics ACDM at the background level and can be
correspondingly constrained.

This provides a clean, likelihood-level discriminator between
SDG and GR+ACDM using existing classes of cosmological data.

Appendix D: Methods for Test B (Compact-Object
Ringdown and Horizon-Scale Observables)

This appendix outlines a complementary observational test of
SDG in the strong-field regime. Where Appendix C targets the
cosmological background, this section describes how compact-object
observations—gravitational-wave ringdown and horizon-scale
imaging— can probe the finite-density core predicted by SDG.

Physical premise

In GR, the end state of a stellar collapse or binary merger is a Kerr
black hole with an event horizon and a curvature singularity at r = 0.
In SDG, the singularity is replaced by a finite-density core with
continuous curvature. The external geometry asymptotically
approaches the Schwarzschild or Kerr form, but the absence of a true
horizon allows partial reflection of gravitational waves and small
deviations in photon orbits.

Ringdown spectrum

After a merger, the remnant emits damped oscillations
characterized by Quasi-Normal Modes (QNMs). To test SDG against
GR, one computes and compares the QNM spectra.

Procedure

1. Solve the axial and polar perturbation equations for the static
SDG metric:

L [0 - VO] W =0,
where 7, is the tortoise coordinate and V;P%(r) is the
effective potential obtained from the SDG field equations. In the

GR limit VyP6 —yichw,

2. Impose outgoing-wave boundary conditions at spatial
infinity and regular (finite) conditions at r = 0 instead of the
GR condition at the event horizon.

3. Use a Leaver-type continued-fraction method or WKB
approximation to find the complex frequencies w;,,.

4. Compare the fundamental mode w,, and overtones with
those measured in LIGO/Virgo/KAGRA events.

Expected discriminant: SDG predicts slightly lower damping
(larger quality factor @ = Re w/2| Im w|) and possibly secondary
“echo” pulses in the time domain, arising from partial reflection at the
finite-density core. GR predicts pure exponential decay with no
echoes. Detecting such echoes or frequency shifts beyond
measurement uncertainty would constitute direct evidence of SDG’s
finite-core structure.

Horizon-scale imaging

For a rotating SDG compact object, the external metric can be
expressed as a Kerr-like solution with a modified lapse function
fspc(r) that differs from Kerr near the would-be horizon. This
modifies the photon-sphere radius 7,,, and thus the apparent shadow
diameter observed by the Event Horizon Telescope (EHT).

Procedure

1. Integrate null geodesics for photons with impact parameter
b = L/E in the equatorial plane of the SDG metric.

2. Determine the critical b, at which photons execute unstable
circular orbits.

3. Compute the corresponding angular shadow radius 6, =
by /D, where D is the source distance.

4. Compare 6, and ring substructure with EHT measurements
of M87* and Sgr A*.
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Expected discriminant

In GR, the shadow diameter for a Schwarzschild black hole is
2+/27GM /c2D. SDG predicts small (percent-level) corrections due to
fspe(r) near the core. Consistency with observed EHT diameters
constrains those corrections and hence the allowed central density p..
A statistically significant deviation from the Kerr prediction would
support SDG.

Simulation workflow
A practical numerical study would proceed as follows:

» Adopt a parameterized form of the SDG metric function
fspe (1) consistent with the regular interior solution of Sec.
11.

> Compute VS2¢(r) and fspg () analytically or numerically.

»  Generate synthetic waveforms using the Einstein Toolkit or
a simplified time-domain evolution code and process them
with LIGO/Virgo open-data pipelines to search for late-time
echoes.

»  Perform raytracing simulations of photon trajectories for a
range of spins a/M and compare the resulting shadow sizes
to EHT data.

Interpretation

Agreement with GR predictions (no echoes, Kerr-consistent
shadows) would constrain SDG parameters (p., 8) and verify that
deviations are small in the observed regime. Detection of persistent
echoes or measurable departures from Kerr imaging would provide
direct evidence for SDG’s finite-density interiors and dynamic
background coupling. Together with the cosmological B(z) analysis
of Appendix 13, these strong-field tests establish a comprehensive
observational program for SDG.
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