
 Innovative Journal of Applied Science 

 
  

1 Volume 2, Issue 6 (Nov-Dec) 2025 

https://doi.org/10.70844/ijas.2025.2.44 

 

 
IJAS-25-130 

Stratified Density Gravity: Gravitation Without Fundamental Time 

Sadid Gagi Peskovic* and Bendik Bo 

Reality AS, Larvik, Norway 

Corresponding Author: Sadid Gagi Peskovic, Reality AS, Larvik, Norway, E-mail: gagi-sp@hotmail.no 

Received date: 17 December, 2025, Accepted date: 26 December, 2025, Published date: 31 December, 2025 

Citation: Peskovic SG, Bo B (2025) Stratified Density Gravity: Gravitation Without Fundamental Time. Innov J Appl Sci 2(6): 44. 

Abstract 

We present Stratified Density Gravity (SDG), a reformulation of gravitation in which the fundamental manifold is described by (x,y,z,ρ) 

rather than (t,x,y,z), with ρ representing local gravitational depth / energy density. In this framework time is not a fundamental coordinate; 

instead, it emerges as a macroscopic ordering parameter associated with irreversible relaxation of density stratification (entropy production). 

We show that curvature is sourced by spatial stratification of ρ and we obtain a field equation in which local curvature depends on 

inhomogeneities in ρ, while large-scale curvature depends on the homogeneous background component of ρ. The local sector reproduces 

Newtonian gravity in the weak-field limit, which fixes the relevant coupling. The global sector yields a dynamical large-scale curvature term 

that provides an alternative to the cosmological constant Λ and explains cosmic acceleration as a background-density phase. Because curvature 

depends on second spatial derivatives of ρ, singularities do not form in collapsed regions: high density cores remain finite. The framework 

therefore preserves the known weak-field and observational successes of General Relativity (GR) while addressing the cosmological constant 

problem and the classical singularity problem. 

Keyword: Modified gravity, General relativity, Cosmology, Cosmic acceleration, Black holes, Singularity resolution, Horizonless compact 

objects, Scale-dependent growth, Bianchi identity, Stratified density field

Introduction 

General Relativity (GR) models’ gravity as the curvature of a 

four-dimensional space-time manifold with coordinates (t, x, y, z) 

[1,2]. GR has been confirmed in a broad range of regimes, including 

perihelion precession, gravitational redshift, light bending and 

lensing and the existence of gravitational waves [3]. These classical 

and modern tests of General Relativity are comprehensively reviewed 

in [4]. 

However, several open issues remain: 

➢ Cosmological constant problem. The observed accelerated 

expansion of the universe is typically modeled in GR by 

introducing a cosmological constant Λ, interpreted as a 

vacuum stress-energy with effective equation-of-state 

parameter 𝑤 ≈ −1 [5-7,8]. The magnitude of Λ is not 

predicted by GR and naive estimates of the vacuum energy 

overshoot the observed effective value by many orders of 

magnitude. This historical development and its modern 

interpretation as dark energy are reviewed in [8]. 

➢ Spacetime singularities. Classical GR predicts curvature 

singularities in black-hole interiors and at the Big Bang. At 

these points the manifold description formally breaks down. 

➢ Time and irreversibility. In GR, time t is placed on 

geometric equal footing with space. But physically, time 

exhibits an arrow: macroscopic processes proceed 

irreversibly, entropy increases and causal ordering is 

asymmetric. GR by itself does not explain the origin of this 

arrow. 

In this work we develop a framework in which density, not time, 

plays the role of the “fourth” coordinate of the gravitational manifold. 

We call this Stratified Density Gravity (SDG). The basic principles 

are: 

➢ The physical manifold is (x, y, z, ρ), where ρ is a scalar 

coordinate that encodes local gravitational depth / energy 

density. 

➢ Time is not fundamental; it is interpreted as an emergent 

macroscopic parameter that orders the irreversible relaxation 

of ρ-stratification and the associated increase in entropy. 

➢ Curvature is sourced directly by spatial stratification of ρ. 

The field equations separate naturally into a local 

inhomogeneity term and a homogeneous background term. 

➢ The local coupling is fixed by requiring that the weak-field 

limit reproduces Newtonian gravity. The global coupling is 

fixed by requiring consistency with homogeneous 

cosmology; this replaces the role of Λ with a quantity 

determined observationally, rather than inserted by hand. 

➢ Because curvature is controlled by second derivatives of ρ, 

not by a divergent stress- energy, extremely dense regions 

become finite and smooth at their core. The r→ 0 

singularities of GR do not occur. 

We will show that this construction: 

➢ Reproduces Newtonian gravity and the standard weak-field 

phenomenology of GR (e.g. gravitational redshift, lensing). 
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➢ Produces late-time cosmic acceleration through a dynamical 

background-density coupling rather than a fundamental 

cosmological constant. 

➢ Eliminates curvature singularities at r = 0 in static, 

spherically symmetric configurations. 

➢ And provides a geometric–thermodynamic origin for 

macroscopic time’s arrow. 

We argue that SDG preserves the empirical successes of GR 

while addressing three core conceptual gaps: the cosmological 

constant problem, singularity formation and the absence of an 

intrinsic arrow of time [5-7]. 

Foundational Assumptions 

Spatial extension is three-dimensional 

Physical extension is described by spatial coordinates (x, y, z). 

Density is the fourth coordinate 

We extend the manifold not by t but by a scalar ρ, 

(𝑥𝑖) = (x, y, z, ρ), i = 1, 2, 3, 4, 

where ρ is interpreted physically as gravitational depth / energy 

density. The manifold is therefore four-dimensional, but its fourth 

coordinate is density, not time. 

 In the weak-field regime we will identify 

ρ ≈ 
∅

𝑐2
 ,                                                                        (1) 

where Φ is the Newtonian gravitational potential and c is the 

speed of light. This normalization makes ρ dimensionless to leading 

order and ties it directly to an experimentally accessible potential. 

Curvature is generated by stratification of ρ 

Gravity is described as curvature induced by spatial gradients and 

second derivatives of ρ. Mass-energy does not act through an 

externally specified stress-energy tensor 𝑇µ𝜈; instead, it appears in the 

theory through the spatial structure of the scalar density coordinate ρ. 

Time is emergent from ρ-relaxation 

Macroscopic “time flow” and its arrow are associated with the 

irreversible smoothing of initially steep ρ-gradients. Entropy 

production corresponds to the redistribution and relaxation of 

stratified density. Observers parameterize this monotonic relaxation 

using a scalar parameter, which they call t. In this sense, t is emergent 

and thermodynamic, not fundamental and geometric. 

No singularities 

Because we will formulate curvature in terms of second 

derivatives of ρ, rather than unbounded stress-energy sources, 

collapsed objects approach a high but finite value 𝜌𝑐  with ∆𝜌 → 0 and 

∆𝑖∆j𝜌 → finite at r = 0. This prevents curvature blow-up. The same 

mechanism eliminates a formal “Big Bang” singularity: the early 

universe can begin at a high but finite ρ, without infinite curvature. 

 

Geometric Structure of the (𝒙, 𝒚, 𝒛, 𝝆) Manifold 

Metric ansatz 

We define the line element on the manifold M with coordinates 

(𝑥𝑖) = (x, y, z, ρ) as 

𝑑𝑠2 = 𝑔𝛼𝛽(𝑥, 𝑦, 𝑧, 𝜌)𝑑𝑥
𝛼𝑑𝑥𝛽 + 𝑓(𝜌)𝑑𝜌2, 𝛼, 𝛽 ∈  {𝑥, 𝑦, 𝑧},

 (2) 

where 𝑔𝛼𝛽 is the spatial three-metric on constant-ρ slices and 

𝑓(𝜌) 𝑑𝜌2 measures the “geometric separation” between density 

layers. 

High-field meaning and range of ρ. In weak fields ρ = Φ/𝑐2 is 

dimensionless and small. In strong fields, ρ is a geometric depth 

coordinate: constant-ρ slices foliate the manifold; increasing ρ labels 

deeper layers. The physically relevant range is set by the solution of 

(18) given matter sources and boundary data. In compact objects, ρ 

saturates at a finite central value 𝜌𝑐  with 𝛻𝜌 → 0, while in cosmology 

𝜌𝑏𝑔 is the homogeneous component that controls the sign of 𝛽𝜌𝑏𝑔 

(Sec. 6–7). No singular behaviour is required or allowed: ρ and its 

second derivatives remain finite in all regular solutions. 

We define the Christoffel symbols 𝛤𝑖𝑗
𝑘 in the usual way and 

compute the Riemann tensor 𝑅𝑖𝑗ℓ
𝑘 , Ricci tensor 𝑅𝑖𝑗, Ricci scalar R and 

the Einstein tensor 

𝐺𝑖𝑗 ≡ 𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗, 𝑖, 𝑗 ∈  {𝑥, 𝑦, 𝑧, 𝜌}.                        (3) 

Physically, 𝑓(𝜌)𝑑𝜌2 plays the role that the gravitational potential 

depth plays in GR’s 𝑔𝑡𝑡 component: deeper density layers correspond 

to slower local processes and stronger curvature. In standard GR this 

behaviour is often described in terms of “time dilation” due to 𝑔𝑡𝑡; 
here it is recast geometrically along the ρ direction itself. 

Field Equation 

We postulate the field equation of SDG in its general form: 

𝐺𝑖𝑗 = 𝛼∇𝑖∇𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗,                        𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧, 𝜌}.            (4) 

Here ∇i is the covariant derivative compatible with 𝑔𝑖𝑗 . The two 

couplings are: 

➢ α: controls local curvature sourced by inhomogeneities in ρ. 

This term must reduce to Newtonian gravity in the weak-

field limit and reproduce standard GR tests [2,3]. 

➢ β: controls homogeneous background curvature sourced by 

the spatially uniform part of ρ. This term will reproduce the 

role that Λ plays in GR cosmology but in SDG we will 

determine β from cosmological observables rather than 

insert it as a constant [5,6]. 

In what follows, α is determined by the Newtonian limit and β is 

determined by homogeneous cosmology. Throughout, we write 𝜌𝑏𝑔 

for the large-scale homogeneous back- ground of ρ (the cosmological 

mean). 
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Local Limit and the Determination of α 

To recover Newtonian gravity, consider the weak-field, slow-

motion limit around nonrelativistic matter. Let Φ be the Newtonian 

gravitational potential, which satisfies 

𝛻2Φ = 4𝜋𝐺𝜌𝑚,                                                                         (5) 

with 𝜌𝑚 the usual mass density. In this regime we identify 

ρ = 
𝛷

𝑐2
  ,                                                                         (6) 

which makes ρ dimensionless to leading order. Taking the 

Laplacian of (6) gives 

𝛻2𝜌 =
4𝜋𝐺

𝑐2
𝜌𝑚.                                                          (7) 

 We now evaluate (4) in this weak-field regime. On Solar System 

scales the homogeneous background term 𝛽𝜌𝑔𝑖𝑗  is negligible 

compared to local inhomogeneities, so we drop it. We also assume 

the spatial metric is nearly Euclidean so covariant derivatives reduce 

to ordinary derivatives. 

Under these assumptions, take the spatial trace of (4). Let 𝛼, 𝛽 ∈
{𝑥, 𝑦, 𝑧} denote spatial indices. Then 

𝐺𝛼
𝛼 ≃ 𝛼𝛻𝛼𝛻

𝛼𝜌 = 𝛼𝛻2𝜌.                                                          (8) 

In standard GR, the weak-field 00-component of Einstein’s 

equations effectively repro- duces (5) and gives 

 𝐺𝛼
𝛼 ≃

8𝜋𝐺

𝑐2
𝜌𝑚,                                                                      (9) 

see, e.g., [2]. Using (7) in (8) yields 

𝛼 (
4𝜋𝐺

𝑐2
𝜌𝑚) =

8𝜋𝐺

𝑐2
𝜌𝑚,  

 so that 

α = 2.                                                                        (10) 

Thus the coefficient multiplying 𝛻𝑖∇𝑗𝜌 is fixed by the Newtonian 

limit and the weak field phenomenology of GR [3]. It is not a tunable 

parameter. 

With this, the SDG field equation becomes 

𝐺𝑖𝑗 = 2𝛻𝑖𝛻𝑗𝜌 + 𝛽 𝜌 𝑔𝑖𝑗.                                                      (11) 

Bianchi identity and the differential constraint for ρ 

The covariant Bianchi identity ∇𝑖𝐺𝑖𝑗 = 0 applied to the SDG field 

equation 

𝐺𝑖𝑗 = 2 𝛻𝑖𝛻𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗                                                       (12) 

implies a consistency condition that constrains permissible ρ-

configurations. Taking ∇𝑖  of (12) and using 𝛻𝑖𝑔𝑖𝑗 = 0 gives 

0 = 2𝛻𝑖𝛻𝑖𝛻𝑗𝜌 + 𝛻𝑗(𝛽𝜌).                                                         (13) 

Commuting covariant derivatives on a scalar gradient yield (for 

any scalar 𝜑) 𝛻𝑖𝛻𝑖𝛻𝑗𝜑 = 𝛻𝑗(□𝜑) + 𝑅𝑗
𝑘𝛻𝑘𝜑, where □ ≡ 𝛻𝑖  𝛻𝑖. Thus 

(13) becomes the vector identity 

𝛻𝑗(2 □𝜌 + 𝛽𝜌) = −2𝑅𝑗
𝑘𝛻𝑘𝜌 .                                      (14) 

Equation (14) is the differential constraint on ρ implied by the 

Bianchi identity. Two important limits follow immediately. 

Homogeneous (FRW) background 

On Hubble scales we assume 𝜌 =  𝜌𝑏𝑔 is spatially homogeneous, 

so ∇𝑘𝜌𝑏𝑔 = 0. Then the right-hand side of (14) vanishes and we 

obtain 

𝛻𝑗(2□𝜌𝑏𝑔 + 𝛽𝜌𝑏𝑔) = 0 ⇒ 2□𝜌𝑏𝑔 + 𝛽𝜌𝑏𝑔 = 𝐶(𝜆) ,       (15) 

with C(λ) a (spatially constant) integration function along the 

monotone evolution parameter λ that orders the macroscopic 

relaxation (cf. Sec. 8). In an exactly stationary background one may 

set C = const.; in practice C(λ) encodes slow secular drift of the 

background density sector. 

Weakly curved, static configurations 

For the static, spherically symmetric case of Sec. 9 with ρ = ρ(r) 

and small curvature near the center, the term 𝑅𝑗
𝑘∇𝑘𝜌 is subleading. 

Thus (29) reduces to 

𝛻𝑗(2□𝜌 + 𝛽𝜌) ≈ 0 ⇒ 2 □𝜌 + 𝛽𝜌 ≈ 𝑐𝑜𝑛𝑠𝑡.       (16) 

which reproduces the radial structure equation used in Sec. 9 and 

yields the regular near-core expansion 

𝜌(𝑟) ≃ 𝜌𝑐 [1 −
𝛽

12
 𝑟2 + 𝑂(𝑟4)] .                                       (17) 

This demonstrates explicitly that the SDG source 2𝛻𝑖𝛻𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗  

is compatible with 𝐺𝑖𝑗 = 0, ensuring consistency of the field 

equations and forming the basis for the background evolution and 

perturbation dynamics developed later. Equation (14) is the precise 

statement that the SDG source 2∇𝑖∇𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗  is compatible with 

∇𝑖𝐺𝑖𝑗 = 0. It will be used below to produce background evolution 

equations and the linear perturbation dynamics. 

Matter coupling and covariance of the ρ equation 

In the Newtonian/weak-field limit (Sec. 5) we identified ρ = Φ/𝑐2 

and recovered ∇2𝜌 = (
4𝜋𝐺

𝑐2
) ρ𝑚. The covariant generalization 

consistent with this limit and with (14) is to close the system by a 

single scalar equation 

𝜌 = (
4𝜋𝐺

𝑐2
) 𝑆 − (

𝛽

2
) 𝜌 + 𝑈′(𝜌).                                                       (18) 

where 𝑆 is a covariant scalar that reduces to 𝜌𝑚 for nonrelativistic 

matter (pressure 𝑝 ≪ 𝜌𝑚𝑐
2) and U(ρ) is an optional self-interaction 

potential encoding high-density microphysics. A minimal, 

conservative choice is 

𝒮 = 𝜌𝑚 −
3𝑝

𝑐2
,                                                        (19) 

i.e. the usual relativistic trace combination that reduces to 𝜌𝑚 in 

the weak-field regime. 

Consistency with the Bianchi constraint. Taking ∇𝑗 of (18) and 

substituting into (14) gives 
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𝛻𝑗(2 □𝜌 + 𝛽𝜌) =
8𝜋𝐺

𝑐2
𝛻𝑗𝑆 + 2𝛻𝑗𝑈′(𝜌) = −2𝑅𝑗

𝑘𝛻𝑘𝜌, 

which is automatically satisfied in homogeneous FRW (where 

∇𝑗= 0 = ∇𝑗𝜌) and reduces, in static weak fields, to the Poisson form 

used in Sec. 5. 

Interpretation 

Equations (12) and (18) together define SDG as a closed system: 

curvature is determined by spatial stratification of ρ, while ρ is 

determined by matter (through S), the background coupling β (Sec. 6) 

and possible self-interaction U. Setting 𝑈 ≡ 0 is sufficient for all 

results shown in this paper; nonzero U can encode finite-density 

microphysics without altering the large-scale conclusions. 

Consistency with Local and Weak-Field Tests 

A complete gravitational framework must reproduce all weak-

field phenomena verified by general relativity. Here we summarize 

the consistency of Stratified Density Gravity (SDG) with the three 

canonical tests: Gravitational redshift, light deflection and 

gravitational- wave propagation. 

Gravitational redshift 

In SDG, redshift arises from gradients in the density potential ρ. 

For a static weak field, the temporal component of the metric satisfies 

𝑔00 ≃ 1 + 2𝛷𝜌/𝑐
2, where 𝛷𝜌 = (𝛼𝐺(𝜌 − 𝜌0) 𝑟

2𝑑𝑟⁄ ) dr plays the 

role of the Newtonian potential. The fractional frequency shift 

between two density layers is therefore 

∆𝜈

𝜈
≈ −

∆𝛷𝜌

𝑐2
  

which coincides with the general relativistic prediction to first 

order when α = 2 as derived in Section 5. This ensures that all 

laboratory and solar-gravitational redshift tests (e.g. Pound–Rebka, 

Hafele–Keating, GPS corrections) are automatically satisfied. 

Redshift as a constraint on the SDG clock factor 

In SDG the physical proper time along a worldline is related to 

the global evolution parameter λ through 

𝑑𝜏 =  𝐹(𝜌) 𝑑𝜆,                                                       (20) 

where F(ρ) is a priori an arbitrary positive function reflecting that 

time is not a fundamental coordinate but an emergent rate associated 

with stratification. Gravitational redshift measurements, however, fix 

the functional dependence of F(ρ). 

Consider two static observers located at radii r1 and r2 in a weak 

gravitational field. Both follow integral curves of the density 

foliation, so their rate of proper time with respect to λ is given by 

F(ρ1) and F(ρ2) respectively. If n(λ) counts wave crests of a photon 

emitted at r1 and received at r2, then 

𝜈𝑒𝑚𝑖𝑡 =
𝑑𝑛

𝑑𝜏1
=

1

𝐹(𝜌1)

𝑑𝑛

𝑑𝜆
 , 𝜈𝑟𝑒𝑐 =

𝑑𝑛

𝑑𝜏2
=

1

𝐹(𝜌2)

𝑑𝑛

𝑑𝜆
,       (21) 

so that the observable frequency ratio satisfies 

𝑣𝑟𝑒𝑐

𝜈𝑒𝑚𝑖𝑡
=
𝐹(𝜌1)

𝐹(𝜌2)
.                                                              (22) 

In general relativity the redshift between two static observers in a 

static metric 

𝑑𝑠2 = 𝑔𝑡𝑡(𝑟)𝑐
2𝑑𝑡2 + 𝑔𝑟𝑟𝑑𝑟

2 + 𝑟2𝑑Ω2                        (23) 

is given exactly by 

𝜈𝑟𝑒𝑐

𝜈𝑒𝑚𝑖𝑡
= √

𝑔𝑡𝑡(𝑟
2)

𝑔𝑡𝑡(𝑟
1)

.                                                       (24) 

Because laboratory, satellite and solar-system redshift 

measurements agree with (24) to parts in 106– 107, SDG must satisfy 

𝐹(𝜌1)

𝐹(𝜌2)
= √

𝑔𝑡𝑡(𝑟
2)

𝑔𝑡𝑡(𝑟
1)

  for all weak-field configurations.       (25) 

The only solution of this functional equation is 

𝐹(𝜌) =
𝐶

√𝑔𝑡𝑡
𝑒𝑓𝑓
(𝜌)

 ,                                                       (26) 

where C is a constant absorbed by rescaling λ. Choosing units 

such that C = 1 yields the SDG clock law 

𝑑𝜏 =
𝑑𝜆

√𝑔𝑡𝑡
𝑒𝑓𝑓
(𝜌)

,                                                           (27) 

 identical in form to the GR relation 𝑑𝜏 = √𝑔𝑡𝑡𝑑𝑡 but with the 

role of coordinate time t played by the emergent parameter λ. 

Expanding (27) for a weak gravitational potential where 𝑔𝑡𝑡 = 1 +
2𝛷/𝑐2 + 𝑂(𝛷2) and using 𝜌 =  𝛷/𝑐2 (Sec. 5) gives 

𝐹(𝜌) = 1 − 𝜌 + 𝑂(𝜌2),                                         (28) 

which reproduces the observed gravitational time dilation to 

leading and next-leading post-Newtonian orders. 

Thus, gravitational redshift does not merely constrain SDG—it 

uniquely fixes the functional dependence of F(ρ) and ties the rate of 

emergent time directly to the effective lapse function of the metric. 

There is no remaining freedom in the definition of 𝑑𝜏 consistent with 

experiment. 

Light deflection and time delay 

In SDG, photons follow null geodesics of the same curved spatial 

geometry determined by ρ(x). The metric near a mass distribution can 

be written in isotropic coordinates as 

𝑑𝑠2 ≃ (1 +
2𝛷𝜌 

𝑐2
) 𝑐2𝑑𝑡2 − (1 −

2𝛷𝜌

𝑐2
) (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) 

which leads to a light-bending angle 

∆𝜃 =
4𝐺𝑀

𝑐2𝑏
 ,  

identical to that predicted by GR when α = 2. This equality 

extends to the Shapiro time delay in radar ranging experiments, 

confirming that SDG reproduces post-Newtonian optics with the 

same first-order parameter γ = 1. 

Parametrized post-Newtonian parameters 

The Parametrized Post-Newtonian (PPN) framework expands the 

metric around Minkowski space in powers of U/𝑐2, where U is the 
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Newtonian potential generated by a slowly moving source [9]. In 

isotropic coordinates the weak-field metric of any metric theory can 

be written as 

𝑔00 = 1 −
2𝑈

𝑐2
+ 2𝛽𝑃𝑃𝑁

𝑈2

𝑐4
+𝑂 (

𝑈3

𝑐6
),                           (29) 

𝑔0𝑖 = 𝑂 (
𝑣

𝑐3
) .                                                           (30) 

𝑔𝑖𝑗 = −(1 + 2𝛾
𝑈

𝑐2
) 𝛿𝑖𝑗 + 𝑂

𝑈2

𝑐4
  .                                           (31) 

as in the standard PPN formalism [9]. 

The parameter γ measures the amount of spatial curvature 

generated per unit Newtonian potential, while 𝛽𝑃𝑃𝑁 quantifies 

nonlinear self-gravity. 

In SDG the weak-field limit is governed by 

𝐺𝑖𝑗 = 2𝛻𝑖𝛻𝑗𝜌,                                                           (32) 

where the Newtonian limit (Sec. 5) fixes 𝜌 =  𝑈/𝑐2 and α = 2. 

Expanding 𝑔𝑖𝑗  to first order and using the standard linearized 

expressions for the Einstein tensor in harmonic gauge [10], 

𝐺00
(2)
= 2𝛻2𝑈/𝑐2,                                                       (33) 

𝐺𝑖𝑗
(2)
=

2

𝑐2
𝜕𝑖𝜕𝑗𝑈 +

2

𝑐2
𝛿𝑖𝑗𝛻

2𝑈,                                        (34) 

 the SDG source term 

 2𝛻𝑖𝛻𝑗𝜌 =
2

𝑐2
𝜕𝑖𝜕𝑗𝑈                                                       (35) 

implies that the spatial metric perturbation must satisfy 

ℎ𝑖𝑗
(2)
= 2

𝑈

𝑐2
𝛿𝑖𝑗,                                                          (36) 

which corresponds to the PPN value 

𝛾 = 1.                                                                       (37) 

This is consistent with the equality of the SDG and GR 

predictions for light deflection and the Shapiro time delay derived 

above. 

To determine 𝛽𝑃𝑃𝑁, we extend 𝐺00 to second order. In the PPN 

expansion one finds [9] 

𝐺00 = 2
𝛻2𝑈

𝑐2
+ 2(2𝛽𝑃𝑃𝑁 − 1)

𝑈𝛻2𝑈

𝑐4
+𝑂 (

𝑈3

𝑐6
).                       (38) 

 In SDG the identification 𝜌 =  𝑈/𝑐2 ensures that all nonlinear 

contributions to 𝐺00 generated by ∇𝑖∇𝑗𝜌 appear in exactly the same 

combinations as in GR: There is no additional scalar degree of 

freedom and no modification of the second-order gravitational self-

energy. 

Thus, the coefficient of 𝑈𝛻2𝑈 must match the GR value, yielding 

𝛽𝑃𝑃𝑁 = 1.                                                                       (39) 

Hence SDG reproduces the full suite of post-Newtonian 

constraints: 

𝛾 = 1, 𝛽𝑃𝑃𝑁 = 1,                                                      (40) 

in agreement with all present Solar-System bounds. Together 

with the exact Newtonian limit (α = 2), gravitational redshift and 

light-deflection results above, this shows that SDG is locally 

indistinguishable from GR throughout all presently tested weak-field 

regimes. 

Gravitational-wave propagation 

Linearizing the field equation 𝐺𝑖𝑗 = 𝛼𝛻𝑖𝛻𝑗𝑝 + 𝛽𝜌𝑔𝑖𝑗 about a 

homogeneous background 𝜌 = 𝜌0 + 𝛿𝜌, 𝑔𝑖𝑗 =  𝜂𝑖𝑗  +  ℎ𝑖𝑗 and 

imposing the transverse–traceless gauge gives, to first order, 

□ℎ𝑖𝑗 =  0,  

up to corrections of order ∇𝑖∇𝑗 (𝛿𝜌/𝜌0), which vanish in vacuum. 

Thus, in empty space where ∇𝜌≃  0, SDG predicts the same two 

tensorial polarizations of gravitational waves traveling at c as GR. 

This satisfies all constraints from LIGO/Virgo timing and polariza- 

tion measurements and confirms that no additional degrees of 

freedom propagate in the linear limit. 

Summary 

The recovery of the exact Newtonian potential (α = 2), correct 

light deflection, standard redshift formula and tensorial gravitational 

waves implies that SDG is indistinguishable from GR in all presently 

tested weak-field regimes. Deviations are therefore expected only in 

the strong-field and cosmological sectors, precisely where GR 

requires ad-hoc constants or encounters singularities. 

Cosmological Limit and the Determination of β 

We now consider the opposite regime: homogeneous cosmology. 

Assume that on Hubble scales ρ is spatially homogeneous and 

slowly varying: 

𝜌 ≈ 𝜌𝑏𝑔 = constant on large scales,                        (41) 

so that ∇𝑖∇𝑗𝜌 ≈ 0 on those scales. Here 𝜌𝑏𝑔 is the smooth 

background density of the universe. In this limit, (11) reduces to 

𝐺𝑖𝑗 ≈ 𝛽𝜌𝑏𝑔𝑔𝑖𝑗 .                                                         (42) 

In homogeneous, isotropic cosmology using GR, the Friedmann 

equation for a spatially flat FRW universe is [2,4,5,8] 

𝐻2 ≡ (
𝑎̇

𝑎
)
2
=
8𝜋𝐺

3
𝜌𝑏𝑔 +

𝛬

3
,                                       (43) 

where H is the Hubble parameter, a is the scale factor and Λ is the 

cosmological constant. In GR, Λ appears in Einstein’s equations as a 

term proportional to 𝑔µ𝜈 . 

Comparing (42) with the GR form 𝐺µ𝜈 = −𝛬𝑔µ𝜈  in the vacuum-

energy-dominated limit suggests the identification 

𝛬𝑒𝑓𝑓 = −𝛽𝜌𝑏𝑔.                                                                     (44) 

This identification parallels the role of Λ in standard relativistic 

cosmology as discussed comprehensively in [4,8]. Eliminating 𝛬𝑒𝑓𝑓 

using (43) gives 
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𝛬𝑒𝑓𝑓 = 3𝐻
2 − 8𝜋𝐺 𝜌𝑏𝑔. 

 Combining with (44) yields 

3𝐻2 − 8𝜋𝐺𝜌𝑏𝑔 = −𝛽𝜌𝑏𝑔. 

Solving for β:  𝛽 = 8𝜋𝐺 −
3𝐻2

𝜌𝑏𝑔
                       (45) 

Equation (45) is the large-scale analogue of (10). It shows: 

➢ β is not arbitrary. It is determined by the cosmological 

expansion rate H and the homogeneous background density 

𝜌𝑏𝑔. 

➢ β can evolve in cosmic time, because H and 𝜌𝑏𝑔 evolve. 

➢ The role played by Λ in GR is here played by a dynamical 

curvature coupling β that emerges from the same ρ field that 

drives local gravity [5-7]. 

Emergence of an effective cosmological term 

Equation (24) shows that in a homogeneous and isotropic 

background the SDG field equation 

𝐺µ𝑣 = 2𝛻µ𝛻𝑣𝜌𝑏𝑔 + 𝛽𝜌𝑏𝑔𝑔µ𝜈                                       (46) 

reduces to a modified Friedmann system in which the quantity 

𝛽𝜌𝑏𝑔 multiplies the metric exactly as a cosmological constant would 

in general relativity. We now make this correspondence explicit. 

For a spatially flat FRW metric, 

𝑑𝑠2 = −𝑐2𝑑𝜆2 + 𝑎2(𝜆)𝑑𝑥⃗2,                                      (47) 

the Einstein tensor satisfies 

𝐺00 = 3𝐻
2, 𝐺𝑖𝑗 = −(2𝐻̇ + 3𝐻

2)𝑎2𝛿𝑖𝑗.                      (48) 

Because 𝜌𝑏𝑔 depends only on λ, the terms involving second 

covariant derivatives simplify: 

𝛻0𝛻0𝜌𝑏𝑔 = 𝜌𝑏𝑔̈ , 𝛻𝑖𝛻𝑗𝜌𝑏𝑔 = 𝐻𝜌̇𝑏𝑔 𝑎
2 𝛿𝑖𝑗.      (49) 

Using these relations in (46), the 00-component becomes 

3𝐻2 = 2𝜌𝑏𝑔̈ + 𝛽𝜌𝑏𝑔𝑐
2 +

8𝜋𝐺

𝑐2
 𝜌𝑚,                          (50) 

where the matter term arises from identifying the trace part of the 

Einstein tensor with the usual GR coupling (Sec. 5). In the quasi-static 

regime in which 𝜌̈𝑏𝑔 is small compared to 𝐻𝜌̇𝑏𝑔—𝑎 condition 

satisfied at late cosmological times and encoded in Eq. (24)—the 

derivative term may be moved to the right-hand side of the equation. 

One then obtains the effective Friedmann equation 

3𝐻2 =
8𝜋𝐺

𝑐2
𝜌𝑚 − 𝛽𝜌𝑏𝑔𝑐

2.                                     (51) 

Comparing (51) with the standard GR form 

3𝐻2 =
8𝜋𝐺

𝑐2
(𝜌𝑚 + 𝜌𝛬),                                                     (52) 

we identify the SDG-induced effective dark-energy density as 

𝜌𝛬,𝑒𝑓𝑓 = −
𝛽𝑐2

8𝜋𝐺
𝜌𝑏𝑔.                                                     (53) 

Equivalently, the geometric term multiplying the metric in (46) 

behaves exactly as a cosmological constant of magnitude 

𝛬𝑒𝑓𝑓 = −𝛽𝜌𝑏𝑔.                                                       (54) 

Interpretation 

Equation (54) shows that cosmic acceleration in SDG originates 

not from a fundamental vacuum constant but from the large-scale 

stratification of the density coordinate. As the universe expands and 

𝜌𝑏𝑔 evolves, the effective cosmological term evolves with it, 

providing a natural mechanism for late-time acceleration without 

introducing a separate dark-energy sector. This replaces the 

cosmological constant problem of GR with a dynamical, physically 

motivated quantity tied directly to the geometry of stratification. 

Relation to the deceleration parameter 

It is useful to connect β to an observable cosmological quantity. 

The deceleration parameter q is defined by 

𝑞 ≡ −
𝑎̈𝑎

𝑎̇2
 .                                                                     (55) 

For an FRW universe containing a perfect fluid with energy 

density ϵ and pressure p, one may write 

𝑞 =
1

2
(1 + 3

𝑝

𝜖
) .                                                      (56) 

Combining the standard Friedmann acceleration equation with 

(43) gives 

3𝐻2(1 + 𝑞) = 8𝜋𝐺𝜌𝑏𝑔.                                          (57) 

Insert (57) into (45) to express β in terms of q: 

𝛽 = 8𝜋𝐺 −
3𝐻2

 𝜌𝑏𝑔
= 8𝜋𝐺 −

8𝜋𝐺𝜌𝑏𝑔

𝜌𝑏𝑔(1 + 𝑞)
= 8𝜋𝐺 −

8𝜋𝐺 

1 +𝑞
 . 

Thus 

𝛽 =
8𝜋𝐺

1 +q
𝑞.                                                                      (58) 

Therefore𝛽 and q have the same sign: 

𝛽 < 0 ⟺ 𝑞 < 0 (accelerating expansion),      (59) 

𝛽 > 0 ⟺ 𝑞 < 0 (decelerating expansion).      (60) 

The transition β = 0 corresponds to q = 0, which is the moment at 

which the universe switches from deceleration to acceleration. In 

GR+Λ, the onset of acceleration is attributed to “dark energy 

dominance.” In SDG, it is a geometric phase change in the density 

coupling β. 

Normalization and dimensional consistency of the 

stratification field 

A central requirement for internal consistency is that all terms 

appearing in the field equations carry the correct physical dimensions. 

In Stratified Density Gravity, the fundamental scalar field ρ is defined 

through the weak-field limit as 

𝜌 ≃
Φ

𝑐2
 ,                                                                    (61) 
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 where Φ is the Newtonian gravitational potential. Since Φ has 

units of velocity squared, ρ is dimensionless. This choice ensures that 

ρ encodes the relative depth of spacetime stratification rather than an 

energy density. 

The field equation 

𝐺𝑖𝑗  = 2𝛻𝑖𝛻𝑗𝜌 +  𝛽𝜌𝑔𝑖𝑗                                                    (62) 

therefore, requires the coefficient β to carry units of inverse length 

squared, 

[𝛽]  =  𝐿−2,                                                                    (63) 

so that both terms on the right-hand side have the same physical 

dimension as the Einstein tensor. 

In a homogeneous cosmological background, 𝜌 =  𝜌𝑏𝑔(𝑡) and 

the stratified term vanishes at leading order, leaving 

𝐺µ𝜈 ≃  𝛽𝜌𝑏𝑔  𝑔µ𝜈 .                                                    (64) 

This identifies the effective cosmological curvature as 

𝛬𝑒𝑓𝑓  ≡  −𝛽 𝜌𝑏𝑔,                                                    (65) 

which carries the correct dimensions of inverse length squared 

and plays the same geometric role as the cosmological constant in 

Einstein gravity. 

Importantly, no additional energy density is introduced: The 

quantity ρ is dimensionless and all dimensional information resides 

in the single curvature scale β. This guarantees internal dimensional 

consistency and ensures that the theory does not introduce hidden or 

redundant degrees of freedom. 

Background closure from the Bianchi identity 

In homogeneous FRW, ∇𝑖𝜌𝑏𝑔 =  0. Recalling the homogeneous 

Bianchi identity of Eq. (15), the background relation may be written 

as 

2□𝜌𝑏𝑔  +  𝛽𝜌𝑏𝑔 =  𝐶(𝜆).                                                     (66) 

Using the FRW kinematics and the relation 3𝐻2(1 + 𝑞)  =
8𝜋𝐺𝜌𝑏𝑔 from Eq. (36), the large-scale SDG sector may be 

parameterized purely by observables H(λ) and q(λ). Using the FRW 

kinematics and the relation 3𝐻2(1 + 𝑞)  = 8𝜋𝐺𝜌𝑏𝑔 from Eq. (19), 

the large-scale SDG sector may be parameterized purely by 

observables H(λ), q(λ) via 

𝛽(𝜆) =
8𝜋𝐺

1 + 𝑞(𝜆)
 𝑞(𝜆),   𝛬𝑒𝑓𝑓(𝜆)  ≡  −𝛽(𝜆) 𝜌𝑏𝑔(𝜆) ,   (67) 

 and Eq. (66) sets a first-order constraint linking the drift of 𝜌𝑏𝑔 

(or H) to the slow evolution of C(λ). In particular, a strictly constant 

late-time acceleration sector corresponds to dβ/dλ ≃ 0 and dC/dλ ≃ 

0; any detectable drift of q(z) away from its GR+Λ behaviour implies 

dβ/dλ ̸= 0. 

Present-day Ω–split as a curvature partition 

A central empirical fact in relativistic cosmology is that the 

present-day expansion rate may be expressed in terms of a matter 

fraction Ω𝑚,0 and an acceleration fraction Ω𝛬,0 = 1 − Ω𝑚,0 (for 

spatial flatness). In standard GR+ΛCDM this is often described as a 

partition between “matter” and a separate “dark-energy” sector. In 

SDG, the same split admits a direct geometric interpretation: it is a 

partition of spacetime curvature between the stratified channel 2∇𝑖∇𝑗𝜌 

and the homogeneous channel 𝛽𝜌 𝑔𝑖𝑗  of the same underlying field ρ. 

Curvature units 

Define the present-day critical density 

 𝜌𝑐𝑟𝑖𝑡,0  ≡
3𝐻0

2

8πG
,                                                                     (68) 

so that 𝜌𝑚,0  =  Ω𝑚,0𝜌𝑐𝑟𝑖𝑡,0. Multiplying by 8𝜋𝐺/𝑐2 expresses 

densities in curvature units: 

8𝜋𝐺

𝑐2
𝜌𝑐𝑟𝑖𝑡,0 =

3𝐻0
2

𝑐2
.                                                      (69) 

Assuming spatial flatness, the present-day Friedmann budget may 

be written as the exact curvature partition 

3𝐻0
2

𝑐2
=

8𝜋𝐺

𝑐2
𝜌𝑚, 0⏟      

matter−associated curvature 

+

𝛬0⏟
acceleration−associated curvature

,                                       (70) 

with 𝛬0 = (1 −  Ω𝑚,0)3𝐻0
2/𝑐2 in GR+ΛCDM. 

Why we use Ω𝑚,0 = 0.315. We adopt Ω𝑚,0 = 0.315 as the 

Planck 2018 best-fit matter fraction for the baseline flat ΛCDM 

model [10]. This is not a tuning parameter of SDG; it is an 

observational calibration point for the present epoch. Any viable 

alternative to GR must match the measured curvature budget at z = 0. 

Exact present-day curvature weights and closure. With Ω𝑚,0= 

0.315, the matter-associated curvature in Eq. (70) is 

8𝜋𝐺

𝑐2
𝜌𝑚,0 = Ω𝑚,0

3𝐻0
2

𝑐2
= 0.945

𝐻0
2

𝑐2
,                                       (71) 

and the acceleration-associated curvature is 

𝛬0 = (1 − Ω𝑚,0) 
3𝐻0

2

𝑐2
= 2.055

𝐻0
2

𝑐2
.                                        (72) 

These satisfy the exact identity 

0.945
𝐻0
2

𝑐2
+ 2.055 

𝐻0
2

𝑐2
=
3𝐻0

2

𝑐2
,                                       (73) 

which is simply Eq. (69) rewritten as a closed numerical partition 

of the present-day spacetime curvature budget. The corresponding 

fractions are 

Ω𝑚,0 ≈ 31.5%, 1 − Ω𝑚,0 ≈ 68.5%.                      (74) 

Thus, at z = 0, roughly two thirds of the curvature budget is 

carried by the acceleration associated sector and one third by the 

matter associated sector. 

Geometric interpretation in SDG 

In SDG, the large-scale field equation reduces to 𝐺µ𝜈 ≃ 𝛽𝜌𝑏𝑔𝑔µ𝜈  

on Hubble scales (Sec. 6) and we identified an effective cosmological 

curvature 
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𝛬𝑒𝑓𝑓  ≡ −𝛽𝜌𝑏𝑔.                                                      (75) 

The observed Ω–split therefore admits a purely geometric 

reading: the matter-associated curvature fraction corresponds to the 

stratified channel 2∇𝑖∇𝑗𝜌 (dominant in the local/inhomogeneous 

regime), whereas the acceleration-associated fraction corresponds to 

the homogeneous channel 𝛽𝜌 𝑔𝑖𝑗  (dominant in the background FRW 

regime). In this sense, the empirical Ω–split measures how the total 

curvature of the universe is distributed between two curvature 

channels of the same stratification field. 

This is the precise meaning of the statement that “matter” and 

“acceleration” are not separate sectors in SDG: They correspond to 

two geometric phases of curvature sourcing generated by ρ. 

Expected magnitude of deviations from general relativity 

A viable modification of gravity must reproduce all currently 

tested predictions of general relativity while allowing for controlled 

deviations only on scales that remain observationally weakly 

constrained. In this section we estimate the magnitude and scale 

dependence of deviations predicted by Stratified Density Gravity 

(SDG) and we state explicitly the assumptions underlying the 

numerical estimates. 

Linearized regime and effective coupling (assumption).  In the 

quasistatic, linear scalar sector about a homogeneous FRW 

background, the modified Poisson equation may be written 

schematically as 

𝛻2𝛷 = 4𝜋𝐺𝑒𝑓𝑓(𝑘, 𝑎)𝜌𝑚,                                                      (76) 

with an effective gravitational coupling of the form 

𝐺𝑒𝑓𝑓(𝑘, 𝑎) = 𝐺 (
1+𝛽(𝑎)

𝑘2
),                                          (77) 

where k is the comoving wavenumber. This estimate is intended 

to quantify the order of magnitude of the scale dependence in the 

linear regime; a full treatment near the transition scale requires the 

time-dependent perturbation evolution (see discussion below). 

Characteristic transition scale 

Equation (77) defines a characteristic scale 

𝑘∗(𝑎) ≡ √|𝛽(𝑎)|,                                                    (78) 

separating 𝑘 ≫ 𝑘∗ (GR limit) from 𝑘 ≲ 𝑘∗ (modified regime). 

From the background cosmology derived in Sec. 6, 𝛽(𝑎) is of order 

𝐻2(𝑎), so at the present epoch we take the conservative normalization 

|𝛽0| ∼ 𝐻0
2 ,                                                                    (79) 

which fixes the deviation scale to be of order the Hubble radius. 

Numerical values 

Using 𝐻0 ≃ 67.4 𝑘𝑚𝑠−1 𝑀𝑝𝑐−1 (Planck 2018 baseline), one has 

𝐻0 ≃ 2.19 × 10
−18𝑠−1 ⇒ 

𝐻0

𝑐
≃ 2.25 × 10−4𝑀𝑝𝑐−1,        (80) 

 So the characteristic comoving horizon scale today is 𝑘 ∼
𝐻0/𝑐 ∼ 2 × 10

−4 𝑀𝑝𝑐−1. For sub-horizon modes (𝑘 ≫ 𝑘∗), the 

fractional deviation from GR scales as 

∆𝐺

𝐺
≃
𝛽0

𝑘2
∼ (

𝐻0/𝑐

𝑘
)
2
.                                                      (81) 

Therefore, for representative large-scale structure wavenumbers, 

𝑘 = 0.1 𝑀𝑝𝑐−1  ⇒  
∆𝐺

𝐺
∼ (

2.25×10−4

0.1
)
2

≈ 5 × 10−6,             (82) 

𝑘 = 0.1 𝑀𝑝𝑐−1  ⇒  
∆𝐺

𝐺
∼ (

2.25×10−4

0.1
)
2

≈ 5 × 10−4,             (83) 

𝑘 = 0.1 𝑀𝑝𝑐−1  ⇒  
∆𝐺

𝐺
∼ (

2.25×10−4

0.1
)
2

≈ 5 × 10−2.              (84) 

 Thus, deviations are generically ≲ 10−4 on the 𝑘 ≳
10−2 𝑀𝑝𝑐−1 scales typically used for galaxy clustering and weak 

lensing, while they become potentially significant only on ultra-large 

scales approaching the horizon. 

Validity domain (important) 

Because the modification turns on near 𝑘 ∼ 𝑘∗ ∼ 𝐻0/𝑐, the 

quasistatic estimate (77) should be interpreted as an order-of-

magnitude guide for 𝑘 ≫ 𝑘∗. A full computation of growth and CMB-

scale observables near the transition requires the time-dependent 

perturbation equations (Sec. 7 and Appendix C). This does not 

weaken the conclusion above: on all sub-horizon scales currently 

probed with high precision, the predicted deviations are naturally 

suppressed. 

Interpretation 

The same curvature scale β that controls the onset of cosmic 

acceleration also sets the scale at which deviations from GR can 

appear. This ties the background expansion and linear perturbation 

phenomenology together within a single geometric framework, rather 

than introducing an independent dark-energy sector. 

Domain of validity and scope of the theory 

The formulation of Stratified Density Gravity (SDG) presented in 

this work is intended as a consistent classical extension of general 

relativity in regimes where spacetime curvature is weak to moderate 

and the dynamics can be described by a smooth background geometry 

with perturbative inhomogeneities. 

Regime of validity 

The theory is constructed to apply under the following conditions: 

➢ Curvature scales satisfy |𝑅| ≪ ℓ𝑃𝐼
−2, ensuring that quantum-

gravitational effects are negligible. 

➢ The spacetime geometry is well described by a differentiable 

metric with small perturbations around an FRW background. 

➢ The stratification field ρ varies smoothly on cosmological 

scales, such that its gradients are well defined and higher-

derivative corrections remain subdominant. 

Within this regime, SDG reproduces general relativity in all 

regimes that have been observationally tested, while allowing 

controlled departures on the largest accessible scales. 

Relation to standard gravity and limits of applicability 

The theory is constructed such that: 
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➢ In the limit β → 0, SDG reduces exactly to general relativity. 

➢ In the weak-field and small-scale limit, all post-Newtonian 

parameters coincide with their GR values. 

➢ Deviations appear only when the curvature scale approaches 

|𝛽| ∼ 𝐻0
2, corresponding to cosmological distances. 

Thus, SDG is not a modification of gravity at all scales, but a 

controlled extension that becomes relevant only in the ultra–infrared 

regime. 

Scope and limitations 

The present formulation does not attempt to describe physics at 

the Planck scale or within strong-field regions such as the immediate 

vicinity of singularities or inside black hole horizons. Instead, it 

provides an effective description of gravity valid from laboratory and 

astrophysical scales up to cosmological horizons. 

The theory also does not introduce new propagating degrees of 

freedom or screening mechanisms. All deviations arise from the 

geometric structure of the field equations themselves. Consequently, 

any departure from general relativity predicted here is inherently 

constrained and testable. 

Falsifiability 

The framework yields clear observational consequences: 

Deviations from general relativity appear only at scales comparable 

to the Hubble radius and follow a specific scale dependence 

determined by the parameter β. Failure to observe such deviations in 

upcoming large-scale surveys would falsify the theory, while 

confirmation would provide direct evidence for the geometric origin 

of cosmic acceleration proposed here. 

Observational signatures and falsifiability 

A defining feature of any viable modification of gravity is the 

existence of clear observational signatures that distinguish it from 

General Relativity. In the present framework, such signatures arise 

not from new degrees of freedom, but from the scale dependence 

induced by the stratified curvature structure of spacetime. 

Scale-dependent growth of structure. Because the effective 

gravitational coupling depends on scale, 

𝐺𝑒𝑓𝑓(𝑘) = 𝐺 (1 +
 𝛽 

𝑘2
),                                           (85) 

the growth rate of matter perturbations acquires a mild scale 

dependence. In particular, the linear growth factor D (a, k) deviates 

from the scale-independent form predicted by ΛCDM, with 

deviations becoming appreciable only for modes approaching the 

Hubble scale. 

This implies that large-scale clustering observables—such as 

redshift-space distortions, weak lensing convergence spectra and the 

integrated Sachs–Wolfe effect—provide direct tests of the theory. 

Predicted observational window. Using the estimates from Sec. 

7.5, the fractional deviation in the effective gravitational coupling is 

∆𝐺

𝐺
~
𝐻0

𝑘
,                                                                     (86) 

implying that measurable deviations may arise only on very large 

scales (𝑘 ≲ 10−2𝑀𝑝𝑐−1). On smaller scales, the theory rapidly 

converges to standard GR, ensuring consistency with precision tests 

in the solar system and in galaxy dynamics. 

Observational avenues 

The most sensitive probes of the predicted deviations are: 

➢ large-scale galaxy clustering and redshift-space distortions, 

➢ weak gravitational lensing at low multipoles, 

➢ the late-time Integrated Sachs–Wolfe effect, 

➢ cross-correlations between large-scale structure and the 

CMB. 

These observables probe precisely the regime in which SDG 

predicts deviations from ΛCDM while remaining compatible with 

existing constraints. 

Distinctiveness relative to other modified gravity models 

Unlike many modified gravity scenarios that introduce screening 

mechanisms or additional propagating degrees of freedom, SDG 

predicts a smooth, scale-driven departure from GR governed by a 

single parameter β. The absence of new fields or screening transitions 

makes the theory highly predictive and falsifiable, with clear 

observational signatures tied directly to the background expansion. 

Summary 

The observational imprint of Stratified Density Gravity is 

therefore both restricted and distinctive: negligible deviations on 

small scales, growing effects near the horizon scale and a fixed 

relation between background expansion and perturbation growth. 

This places the theory squarely within the reach of upcoming 

cosmological surveys while preserving consistency with all current 

tests of gravity. 

Linear Perturbations about FRW and Structure 

Growth 

Let 𝜌(𝑥) = 𝜌𝑏𝑔 + 𝛿𝜌(𝑥) and 𝑔𝑖𝑗 = 𝑔̅𝑖𝑗 + ℎ𝑖𝑗 with 𝑔̅𝑖𝑗  the FRW 

background. Linearizing (12) and (18) gives, in Fourier space and in 

longitudinal gauge for scalar modes (neglecting vector/tensor for 

brevity), 

𝛿𝐺𝑖𝑗
(𝑆)
= 2𝛻𝑖𝛻𝑗𝛿𝜌 + 𝛽𝛿𝜌𝑔̅𝑖𝑗 + 𝜌𝑏𝑔𝛿𝛽𝑔̅𝑖𝑗  ,                          (87) 

□ 𝛿𝜌 =
4𝜋𝐺

𝑐2
𝛿𝑆 −

𝛽

2
𝛿𝜌 −

𝛿𝛽

2
𝜌𝑏𝑔.                            (88) 

For subhorizon scalar modes (𝑘 ≫ 𝑎𝐻) and nonrelativistic matter 

(𝛿𝑆 ≃ 𝛿𝜌𝑚), the dominant piece reduces to a Poisson-type relation 

𝑘2𝛿𝜌 ≃
4𝜋𝐺

𝑐2
𝑎2𝛿𝜌𝑚,                                                (89) 

which reproduces the standard growth law at leading order. On 

large scales (𝑘 ∼  𝑎𝐻), the homogeneous term 𝛽𝜌𝑏𝑔 contributes and 

the SDG prediction for the growth rate 𝑓𝜎8(𝑧) can differ from GR+Λ 

in a way controlled by β(z) of Sec. 6. A full treatment with baryons 

and radiation follows the usual Boltzmann hierarchy with the 

replacement Φ → 𝑐2𝜌 in the scalar sector; this will be pursued in the 

companion cosmology paper. 
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Interpretation and Phases 

Equation (11) with (10) and (45) can be summarized as 

𝐺𝑖𝑗 = 2𝛻𝑖∇𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗.                                                        (90) 

This suggests two distinct but unified regimes: 

➢ Local regime. The 2∇𝑖∇𝑗𝜌 term dominates where ρ varies 

strongly in space. This regime reproduces Newtonian 

gravity and the weak-field tests of GR. Since α = 2 is fixed 

by (10), SDG automatically agrees with the classical limit of 

gravity [2,3]. 

➢ Cosmological regime. The 𝛽𝜌𝑔𝑖𝑗  term dominates where ρ is 

nearly homogeneous on Hubble scales. This is the analogue 

of a cosmological constant term. However, unlike GR’s 

constant Λ, SDG predicts a β that is determined by (H, 𝜌𝑏𝑔) 

via (45) and is therefore, in principle, epoch-dependent. This 

gives a dynamical account of late-time acceleration [5–7]. 

It is also useful to write 

𝛽𝜌𝑏𝑔 = 8𝜋𝐺𝜌𝑏𝑔 − 𝐻
2.                                           (91) 

𝛽𝜌𝑏𝑔 > 0 ⇐⇒  8𝜋𝐺𝜌𝑏𝑔 > 3𝐻
2 (decelerating / matter-

dominated-like phase), 

𝛽𝜌𝑏𝑔 > 0 ⇐⇒  8𝜋𝐺𝜌𝑏𝑔 < 3𝐻
2 (accelerating / vacuum-

dominated-like phase). 

Thus, SDG predicts that cosmic acceleration is not the result of 

inserting an a priori constant Λ. Instead, acceleration is a phase in 

which the expansion rate outpaces the self-gravity of the background 

density, producing β < 0 and therefore q < 0. 

Emergent Time and Gravitational Redshift 

In GR, gravitational time dilation and redshift are attributed to 

differences in the 𝑔𝑡𝑡  component of the metric: clocks deeper in a 

gravitational potential run slower. In SDG, there is no fundamental t 

coordinate. Process rates depend on ρ directly. 

Two observers at different ρ occupy different “density depths.” A 

process with frequency ν at one depth will appear redshifted relative 

to the same process at another depth. Observable gravitational 

redshift is therefore encoded as a difference in ρ, not a difference in 

coordinate time. This reproduces gravitational redshift and GPS 

clock-rate offsets in a way that is operationally equivalent to GR, but 

conceptually replaces “curved time” with “layered density” [2]. 

At the macroscopic level, the arrow of time arises because 

stratified ρ-configurations tend to relax and redistribute, smoothing 

initially steep gradients. This relaxation is associated with entropy 

production. Observers parametrize this monotonic evolution with a 

scalar parameter they call t: 

𝑑𝜏 ∝ 𝐹(𝜌)𝑑𝜆, 

where dτ is the locally measured proper interval, dλ is a monotone 

evolution parameter tracking the relaxation of ρ and F(ρ) encodes 

how fast physical processes occur at a given density depth. The 

existence of a global arrow of time is then understood as a 

manifestation of global entropy increase via ρ-relaxation, not as an 

intrinsic direction of a fundamental t coordinate. In this sense SDG 

gives a geometric–thermodynamic basis for macroscopic time. 

Entropy functional and the macroscopic arrow 

A concrete entropy functional that increases under ρ-relaxation is 

𝑆[𝜌] = −∫∑ 𝑑
3𝑥√𝛾 

|𝛻𝜌|2

𝜌∗
2 ,                                     (92) 

 with γ the determinant of the induced three-metric on a constant-

ρ slice and ρ∗ a reference scale. Under the diffusion-like part of (18) 

(the □𝜌 term) one finds 

𝑑𝑠

𝑑𝜆
 =

2

𝜌∗
2  ∫∑ 𝑑

3𝑥 √𝛾(𝛻𝑖𝛻𝑗𝜌)  (𝛻
𝑖𝛻𝑗𝜌) ≥  0 ,  

So is nondecreasing along the monotone parameter λ that orders 

relaxation. Clocks realize dτ F(ρ) dλ (Sec. 8), so the observed arrow 

of time corresponds to the monotonic increase of as layered density 

stratification smooths. This furnishes the thermodynamic 

underpinning of macroscopic time in SDG. 

Static, Spherically Symmetric Configurations and 

Absence of Singularities 

One of the most severe conceptual problems in GR is the 

existence of curvature singularities: for Schwarzschild black holes, 

curvature invariants diverge as 𝑟 → 0; in FRW cosmology, curvature 

diverges at the Big Bang. SDG avoids these singularities by 

construction. 

Consider a static, spherically symmetric configuration with 𝜌 =

 𝜌(𝑟), where 𝑟 = √𝑥2 + 𝑦2 + 𝑧2. Adopt a static, spherically 

symmetric spatial metric of the form 

𝑑𝑠2 = 𝐴(𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2 + 𝑓(𝜌) 𝑑𝜌2,                      (93) 

with 𝑑Ω2 the standard two-sphere line element. We treat f(ρ) as 

smooth and positive. We assume ρ(r) is monotone nonincreasing and 

differentiable. 

Full radial equations 

For the ansatz 𝑑𝑠2 = 𝐴(𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2 + 𝑓(𝜌)𝑑𝜌2 with 𝜌 =
 𝜌(𝑟), the independent components of (12) reduce to two coupled 

ODEs (details omitted for length; provided in the supplementary 

derivation file): 

1

𝑟2
𝑑

𝑑𝑟
[𝑟2

𝑑𝜌

𝑑𝑟 
] −

𝐴′

2𝐴

𝑑𝜌

𝑑𝑟
=
𝛽

2
𝜌 + 𝑂((𝜌′)2, 𝑓′(𝜌)).                      (94) 

𝐴′

𝐴2𝑟
−
1−𝐴−1

𝑟2
= 2

𝑑2𝜌

𝑑𝑟2
+ 𝛽𝜌 + 𝑂((𝜌′)2, 𝑓′(𝜌)).                      (95)  

Regularity at r = 0 enforces 
𝑑𝜌

𝑑𝑟
|𝑟=0 = 0, finite ρc and finite 

curvature scalars. The near-center series solution is 𝜌(𝑟) =
𝜌𝑐[1(𝛽/12)𝑟

2 +𝑂(𝑟4)], consistent with the core result used in Sec. 

9 and with the Bianchi closure. 

Inserting (93) and 𝜌 =  𝜌(𝑟) into (11) produces coupled ODEs 

for A(r) and ρ(r). Focusing on the radial component of the 2𝛻𝑖𝛻𝑗𝜌 

term, one obtains schematically 

1

𝑟2
𝑑

𝑑𝑟
𝑟2

𝑑𝜌

𝑑𝑟
≃
𝛽

2
𝜌,                                                      (96) 
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where we have written the leading radial structure of ∇𝑖∇𝑗𝜌. A 

more detailed calculation keeps all A(r)-dependent terms, but (96) 

captures the key point: ρ is governed by a second-order equation 

which is regular at r = 0. 

The near-center solution to (96) is 

𝜌(𝑟) ≃ 𝜌𝑐 [1 −
𝛽

12
𝑟2 + 𝑂(𝑟4)],                                   (97) 

where 𝜌𝑐  is a finite central density. The derivatives behave as 

 
𝑑𝜌

𝑑𝑟
|𝑟=0 = 0,

𝑑2𝜌

𝑑𝑟2
|𝑟=0 = −

𝛽

6
𝜌𝑐 ,    

which are finite. Because curvature in SDG is sourced by 2𝛻𝑖𝛻𝑗𝜌 

and 𝛽𝜌𝑔𝑖𝑗, both of which remain finite at r = 0 for the solution (97), 

the curvature invariants built from 𝐺𝑖𝑗 remain finite at r = 0. There is 

no divergent curvature core. 

This point is fundamental: SDG does not require a singular center 

to support a massive compact object. Instead, it predicts a high-

density, finite-curvature core. The same mechanism applies to the 

early universe: An initially high but finite ρ with smooth stratification 

does not force divergent curvature. The “Big Bang singularity” is 

replaced by a finite, high-density initial configuration. 

Thus, SDG provides classical non-singular solutions already at 

the level of the field equations, without appealing to quantum gravity 

or Planck-scale corrections. This addresses one of the key conceptual 

gaps in GR. 

Future Work 

The present work establishes the geometric foundations of 

Stratified Density Gravity (SDG), derives its field equations, recovers 

the Newtonian limit and standard weak-field phenomenology and 

connects its large-scale sector to cosmological observables. Several 

developments now follow naturally; these represent concrete, testable 

predictions and a roadmap for continuing the theory. As shown in Sec. 

6, SDG reproduces all presently verified weak-field tests of GR, 

including redshift, light deflection and gravitational-wave 

propagation. 

Full static, spherically symmetric solutions 

In Sec. 12 we showed that a static, spherically symmetric 

configuration with 𝜌 =  𝜌(𝑟) admits a regular, finite-density core 

and no curvature singularity. The next step is to solve the full SDG 

field equations 

𝐺𝑖𝑗 = 2𝛻𝑖𝛻𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗   

for the general spherically symmetric ansatz (93) without 

assuming that A(r) is slowly varying. 

Near-core expansions and regularity 

A key structural prediction of SDG is that static, spherically 

symmetric configurations possess a regular, finite-curvature core at r 

= 0. This follows directly from the field equation 

𝐺𝑖𝑗 = 2𝛻𝑖𝛻𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗 ,                                              (98) 

together with spherical symmetry. We adopt the standard static 

line element 

𝑑𝑠2 = −𝐴(𝑟)𝑐2𝑑𝑡2 + 𝐵(𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2,               (99) 

with ρ = ρ(r). Regularity at the center requires: 

𝐴(𝑟) = 𝐴0 + 𝐴
2𝑟2 + 𝑂(𝑟4),    𝐵(𝑟) = 1 + 𝐵2𝑟2 +

𝑂(𝑟4),    𝜌(𝑟) = 𝜌𝑐 + 𝜌
2𝑟2 + (𝑟4),                                             (100) 

with finite constants 𝐴0 > 0 and 𝜌𝑐 > 0 and with the conditions 

𝐴′(0)  =  0, 𝐵(0)  =  1, 𝜌′(0)  =  0, 

ensuring a smooth origin in curvature coordinates. Substituting 

(100) into the field equation (98) and equating coefficients of like 

powers of r yields algebraic relations among 

{𝐴2, 𝐵2, 𝜌2}. At leading nontrivial order, one finds 

𝜌2 = −
𝛽

12
𝜌𝑐,                                                          (101) 

which shows that the density coordinate decreases quadratically 

away from the center. The remaining coefficients are determined as 

𝐴2 =
1

6
(𝛽𝜌𝑐 + 𝜋𝐺𝑒𝑓𝑓𝜌𝑐),         𝐵2 = −

1

6
(𝛽𝜌𝑐 − 8𝜋𝐺𝑒𝑓𝑓𝜌𝑐),

                   (102) 

where 𝐺𝑒𝑓𝑓 denotes the effective Newtonian coupling appearing 

in the weak-field limit (α = 2). These relations show that all second-

order coefficients are fixed once 𝜌𝑐  is specified: the center has only 

one physical free parameter. 

Finiteness of curvature invariants 

The Ricci scalar R, Kretschmann scalar 𝐾 = 𝑅𝑎𝑏𝑐𝑑𝑅
𝑎𝑏𝑐𝑑 and 

Ricci contraction 𝑅𝑎𝑏𝑅
𝑎𝑏 computed from (99) remain finite at r = 0. 

Using (100) and (102) one finds 

𝑅(0) = 3𝛽𝜌𝑐 + 𝑂(𝑟
2),                                         (103) 

𝐾(0) = 𝐶1(𝛽𝜌𝑐) + 𝑂(𝑟
2),                                      (104) 

𝑅𝑎𝑏𝑅
𝑎𝑏(0) = 𝐶2(𝛽𝜌𝑐)

2 + 𝑂(𝑟2),                          (105) 

for dimensionless constants 𝐶1, 𝐶2 determined by the algebraic 

structure of the tensor decomposition. Thus, the central curvature is 

set entirely by the product 𝛽𝜌𝑐 , demon-strating that SDG replaces the 

classical Schwarzschild singularity with a finite-curvature core whose 

scale is controlled by β. 

Physical degrees of freedom 

The expansion (100) shows that only the central value 𝜌𝑐  labels 

distinct solutions; the coefficient 𝐴0 may be absorbed into a rescaling 

of the time coordinate and B(0) = 1 is required for regularity. 

Consequently, the SDG static solution space is one-dimensional at the 

center, analogous to specifying the central density of a stellar 

configuration. When the ODE system obtained from (98) is integrated 

outward, asymptotic flatness fixes the mass parameter M at large r. 

Matching the core to the asymptotic region then imposes a nontrivial 

relation between M and 𝜌𝑐 , producing a unique SDG analog of a 

black-hole/compact-object profile with a nonsingular center. 
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Global structure and mass–core matching 

The near-core analysis shows that static SDG configurations are 

specified locally by a single physical parameter, the central value 𝜌𝑐 . 
To understand how this parameter determines global properties, we 

integrate the full SDG field equations (98) outward from the regular 

center using the expansions (100)–(102) as initial data. Asymptotic 

flatness requires 

𝐴(𝑟)
𝑟→∞
→  1 −

2𝐺𝑀

𝑐2𝑟
+𝑂(𝑟−2), 𝐵(𝑟)

𝑟→∞
→  1 +

2𝐺𝑀

𝑐2𝑟
+ 𝑂(𝑟−2),  

 which defines the physical ADM mass M. 

Preliminary numerical integrations of the resulting ODE system 

(not shown here) and analytic considerations based on monotonicity 

of 𝜌(𝑟) suggest the following qualitative behavior: 

1. For each choice of 𝜌𝑐  > 0, the initial-value problem defined 

at 𝑟 = 0 appears to extend smoothly to arbitrarily large r, 

yielding solutions that can approach asymptotic flatness. 

2. The asymptotic mass M (𝜌𝑐) increases monotonically with 

𝜌𝑐  in all examples examined: 

 
𝑑𝑀

𝑑𝜌𝑐
>  0 (observed numerically). 

This indicates that the SDG family of static configurations forms 

a one-parameter sequence analogous to relativistic stellar models. 

3. In all integrated cases 𝜌(𝑟) decreases smoothly and 

monotonically from its central value toward ρ → 0 at large 

r, with no internal turning point or shell structure. 

Compactness and absence of horizons 

The integrated solutions consistently satisfy 

𝐴(𝑟)  > 0 for all r, 

indicating the absence of event horizons. Instead, the 

configuration contains a finite-curvature core whose scale is 

determined by the combination 𝛽𝜌𝑐 . The compactness 

𝐶(𝑟)  =  
2𝐺𝑀(𝑟)

𝑐2𝑟
  

 typically reaches a maximum at some radius 𝑟∗ but remains 

strictly below unity in all cases investigated. This defines an SDG 

analog of the Buchdahl bound, 

𝐶(𝑟) < 𝐶𝑚𝑎𝑥(𝛽), 𝐶𝑚𝑎𝑥(𝛽) <  1,  

with 𝐶𝑚𝑎𝑥 increasing as the stratification parameter β increases. 

Observational significance 

These preliminary findings support the physical picture of SDG 

compact objects as a regular, horizonless, one-parameter family 

characterized by 𝜌𝑐 . Their distinct internal structure implies modified 

quasi-normal mode spectra, potential gravitational-wave echoes and 

altered shadow radii compared to GR black holes. These signatures 

provide concrete strong-field tests of SDG. 

Observational significance. Because 𝜌𝑐  uniquely determines M, 

the SDG family of static ultracompact objects is one-dimensional. 

Each object has: 

• A finite curvature plateau at 𝑟 =  0 determined by 𝛽𝜌𝑐 , 
• A smooth transition to an exterior Schwarzschild-like 

region, 

• A maximum achievable compactness governed entirely by 

𝛽. 

These properties distinguish SDG compact objects from both 

neutron stars and GR black holes. They imply modified quasi-normal 

mode spectra, potential echoes in post-merger gravitational 

waveforms and altered shadow radii. Each of these effects scales 

predictably with 𝜌𝑐  and β, providing concrete strong-field tests of 

SDG. 

The program is: 

1. Derive the coupled ODEs for 𝐴(𝑟) and 𝜌(𝑟) from the full 

𝐺𝑖𝑗. 

2. Impose regularity at 𝑟 =  0: finite 𝜌𝑐 , 𝑑𝜌/𝑑𝑟 =  0, finite 

curvature scalars. 

3. Impose asymptotic matching to an exterior region in which 

𝜌(𝑟) → 0. 

This yields the SDG analog of a “black-hole”/compact-object 

solution. Two observational targets follow: 

• the redshift between the core and a distant observer (in GR, 

this diverges at an event horizon); 

• the quasi-normal mode / ringdown frequency spectrum after 

perturbation. 

Both are directly testable with gravitational-wave observations of 

compact mergers and with horizon-scale imaging of supermassive 

compact objects. 

Gravitational-wave emission and ringdown 

Since SDG modifies the internal structure of compact objects but 

leaves the weak-field, far-zone limit consistent with Newtonian/GR 

phenomenology, a key next step is to analyze radiation: 

1. Linearize (90) about a weakly curved background to identify 

the propagating tensor degrees of freedom and confirm that 

gravitational radiation exists with the same leading 1/r fall-

off as in GR. 

2. Compute the effective stress-energy flux of these 

perturbations and test whether inspiral luminosities match 

GR to leading order. 

3. Evaluate post-merger ringdown for the finite-core objects in 

(i). If the interior is non-singular, the boundary conditions 

for perturbations differ from a classical event horizon and 

could generate echoes or shifted modes. 

Such deviations are observationally accessible to current and 

next-generation gravitational- wave detectors. 

Cosmological background evolution and 𝜷(𝒛) 

Equation (45) implies that β is determined by H and 𝜌𝑏𝑔. Since 

both depend on epoch, 

𝛽 =  𝛽(𝑧).  

The next task is to evolve a(λ), H(λ), 𝜌𝑏𝑔(λ) and β(λ) self-

consistently in an FRW background using SDG rather than GR. 
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A cosmological null test for SDG 

In the homogeneous FRW sector the SDG field equation, 

𝐺µ𝜈 =  2𝛻µ𝛻𝑣𝜌𝑏𝑔  + 𝛽𝜌𝑏𝑔𝑔µ𝜈 ,                                    (106) 

reduces to modified Friedmann equations that may be written in 

GR form by identifying an effective dark-energy component sourced 

by 𝜌𝑏𝑔. For a spatially flat universe and matter density 𝜌(𝑚)(𝑧), the 

00-component of (106) yields 

3𝐻2(𝑧) =
8𝜋𝐺

𝑐2
𝜌𝑚(𝑧)  − 𝛽𝜌𝑏𝑔(𝑧)𝑐

2  + ∆𝜌(𝑧),    (107) 

where ∆𝜌(𝑧) contains contributions from 𝜌𝑏𝑔̇  and 𝜌𝑏𝑔 ̈ arising 

from the term 2∇µ ∇𝑣𝜈𝜌𝑏𝑔. In Sec. 6, Eq. (24), we showed that in the 

quasi-static regime relevant for late-time cosmology these derivative 

terms satisfy a constraint that allows (107) to be written as 

3𝐻2(𝑧) =
8𝜋𝐺

𝑐2
𝜌𝑚(𝑧) − 𝛽𝜌𝑏𝑔(𝑧)𝑐

2 ,                   (108) 

which plays the role of the SDG Friedmann equation. Solving 

(108) for β gives the observationally reconstructible quantity 

𝛽𝑜𝑏𝑠(𝑧) =
8𝜋𝐺

𝑐2
𝜌𝑚(𝑧)−3𝐻

2(𝑧)

𝜌𝑏𝑔(𝑧)𝑐
2 .                                    (109) 

SDG prediction 

𝛽𝑜𝑏𝑠(𝑧) must be constant. In GR the Friedmann equation contains 

a fundamental constant Λ. In SDG this role is played instead by the 

combination −𝛽𝜌𝑏𝑔. 

Because β is a fixed coupling constant of the theory, it must 

satisfy 

𝛽𝑜𝑏𝑠(𝑧) = constant,                                                    (110) 

for all redshifts where the SDG-FRW reduction applies. Any 

statistically significant evolution of 𝛽𝑜𝑏𝑠(𝑧) extracted from 

cosmological data would therefore falsify this sector of SDG. 

Equation (109) also shows that SDG imposes a consistency 

condition relating the background density coordinate 𝜌𝑏𝑔(𝑧) to the 

measured expansion rate 𝐻(𝑧): 

𝜌𝑏𝑔(𝑧) =
8𝜋𝐺

𝑐2
𝜌𝑚(𝑧)−3𝐻

2(𝑧)

𝛽𝑐2
.                                   (111) 

Thus, the homogeneous density field 𝜌𝑏𝑔 is not an additional free 

function but is fully determined—up to the constant 𝛽—by the matter 

evolution and the observed Hubble expansion. 

Interpretation as an effective dark-energy fluid 

Writing (108) in the GR form, 

3𝐻2(𝑧) =
8𝜋𝐺

𝑐2
[𝜌𝑚(𝑧) + 𝜌𝑒𝑓𝑓(𝑧)] ,                             (112) 

identifies the SDG-induced effective dark-energy density as 

𝜌𝑒𝑓𝑓(𝑧) =  −
𝛽𝑐2

8𝜋𝐺
𝜌𝑏𝑔(𝑧).                                             (113) 

 Therefore, the ratio 

𝜌𝑒𝑓𝑓(𝑍)

𝜌𝑏𝑔(𝑍)
=
−𝛽𝑐2

8πG
                                                                (114) 

must likewise remain constant. This constitutes a second null test 

for SDG, equivalent to (110). 

Consequences 

Equations (109)–(111) convert SDG into a predictive 

cosmological framework: given 𝐻(𝑧) and 𝜌𝑚(𝑧) from observations, 

SDG uniquely determines 𝜌𝑏𝑔(𝑧)  and imposes a stringent 

requirement that 𝛽𝑜𝑏𝑠(𝑧)  remain constant. This contrasts with generic 

dark-energy models in which the equation-of-state parameter 𝑤(𝑧) 
may be chosen freely. In SDG the background evolution of the 

density coordinate and the cosmic acceleration history are both fixed 

by a single coupling β, providing a clear set of observational null tests 

distinguishing SDG from ΛCDM. 

This produces: 

1. an SDG analog of the Friedmann equation, where 𝛽𝜌𝑏𝑔 

replaces Λ; 

2. a predicted expansion history 𝐻(𝑧) and deceleration 

parameter 𝑞(𝑧) via (58); 

3. a predicted effective equation-of-state parameter 𝑤𝑒𝑓𝑓(𝑧) 

for the large-scale background. 

In ΛCDM, 𝑤(𝑧) ⋍ −1 is constant at late times [5-7]. In SDG, 

𝑤𝑒𝑓𝑓(𝑧) can evolve because β evolves. Confronting 𝐻(𝑧), supernova 

luminosity distances, baryon acoustic oscillations and CMB-inferred 

expansion history with this evolving-β background is a direct 

observational test of SDG against ΛCDM. 

Linear perturbations and structure growth 

Beyond the background expansion, the growth of 

inhomogeneities (galaxy clustering, weak lensing) is sensitive to the 

law of gravity. SDG predicts that curvature responds directly to 

spatial second derivatives of 𝜌 through 2𝛻𝑖𝛻𝑗𝜌, while the 

homogeneous background contributes through 𝛽𝜌𝑔𝑖𝑗 . 

Linear perturbations and the SDG growth equation 

To assess the observational viability of SDG at the level of cosmic 

structure, we consider scalar perturbations around the homogeneous 

background discussed in Sec. 11.3. Working in Newtonian gauge, 

𝑑𝑠2  = −(1 + 2𝛷)𝑐2𝑑𝜏2 + 𝑎2(𝜏)(1 − 2𝛹)𝑑𝑥⃗2,   (115) 

and perturbing the density coordinate as 𝜌 = 𝜌𝑏𝑔(𝜏) + 𝛿𝜌(𝜏, 𝑥⃗), 

the SDG field equation 

𝐺µ𝜈 = 2𝛻µ𝛻𝜈𝜌 + 𝛽𝜌𝑔µ𝜈                                                    (116) 

produces, at linear order, a modified Poisson equation for the 

potential Φ. The spatial trace of the (i, j) components yields 

−
∇2𝛷

𝑎2
= 4𝜋𝐺𝛿𝜌𝑚 +

1

2
(𝛽𝛿𝜌 − 2𝛿̈𝜌 − 6𝐻𝛿̇𝜌)                      (117) 

where over dots denote derivatives with respect to proper time τ 

and where matter has been assumed pressure less. 
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Quasi-static sub-horizon limit 

For modes with comoving wavenumber 𝑘 ≫ 𝑎𝐻, satisfying k the 

time derivatives of 𝛿𝜌 are suppressed relative to spatial derivatives 

and the 𝛿̈𝜌 and 𝐻𝛿̇𝜌 terms in (117) may be neglected. Equation (117) 

then simplifies to 

−
∇2Φ

𝑎2
= 4𝜋𝐺𝑒𝑓𝑓(𝑧) 𝛿𝜌𝑚,                                                   (118) 

where the effective gravitational coupling is 

𝐺𝑒𝑓𝑓(𝑍) = 𝐺 (1 +
𝛽

8𝜋𝐺
 
𝛿𝜌

𝛿𝜌𝑚
).                                              (119) 

 Because 𝜌 =  𝛷/𝑐2 in the weak-field limit, the perturbations 

satisfy 𝛿𝜌 =  𝛿𝛷/𝑐2 𝑎𝑛𝑑 the Poisson equation self-consistently 

fixes 𝛿𝜌/𝛿𝜌𝑚 to be a scale-independent function of the background. 

One finds 

 𝐺𝑒𝑓𝑓(𝑧) = 𝐺 [1 + 
𝛽𝜌𝑏𝑔(𝑧)

3𝐻2(𝑧)
].                                    (120) 

Thus, SDG predicts a redshift-dependent but scale-independent 

modification of effective gravitational clustering strength. 

Growth of matter perturbations 

The matter density contrast 𝛿 =  𝛿𝜌𝑚/𝜌𝑚 obeys, in the quasi-

static regime, the standard continuity and Euler equations. Combining 

these with (118) yields the SDG growth equation 

𝛿̈ + 2𝐻𝛿̇ − 4𝜋𝐺𝑒𝑓𝑓(𝑧)𝜌𝑚𝛿 = 0.                          (121) 

Introducing the growth function 𝑓 =  𝑑 ln 𝛿/𝑑 ln a and using 𝛿̇ =
 𝐻𝑓𝛿, equation (121) becomes 

𝑑𝑓

𝑑 𝐼𝑛 𝑎
+ 𝑓2 + (2 +

𝐻

𝐻2
) 𝑓 =

3

2
Ω𝑚(𝑧) [1 +

𝛽𝜌𝑏𝑔(𝑧)

3𝐻2(𝑧)
],           (122) 

where Ω𝑚(𝑧) = 8𝜋𝐺𝜌𝑚/(3𝐻
2). 

Prediction for the SDG growth index 

In GR+ΛCDM the growth rate is well approximated by 𝑓 ≃ Ω𝑚
𝛾

 

with 𝛾𝛬𝐶𝐷𝑀 ≃ 0.55. In SDG the modification 𝐺 → 𝐺𝑒𝑓𝑓 shifts 

the right-hand side of (122). Writing the SDG correction as 

𝜖(𝑧)  =  
𝛽𝜌𝑏𝑔(𝑧)

3𝐻2(𝑧)
,                                                    (123) 

and expanding 𝑓 ≃ Ω𝑚
𝛾𝑆𝐷𝐺

 to first order in ϵ yields 

𝛾𝑆𝐷𝐺 ≃
3(1−∈)

5−6∈
=
3

5
+

3

25
∈ +𝑂(∈2),                                   (124) 

where ϵ(z) is determined entirely by the background SDG 

cosmology. Since ϵ(z) is positive whenever 𝛽𝜌𝑏𝑔  <  0 drives 

acceleration, SDG predicts 

𝛾𝑆𝐷𝐺 > 0.55 (accelerating universe).                     (125) 

This constitutes a direct, parameter-free observational signature 

of SDG in linear structure formation. 

1. Write 𝜌(𝑥⃗) = 𝜌𝑏𝑔 +  𝛿𝜌(𝑥⃗) and linearize (90) around the 

homogeneous FRW background. 

2. Derive the linear evolution equation for 𝛿𝜌 in Fourier space. 

In GR this yields the standard growth law for matter 

perturbations 𝛿𝑚(𝑘, 𝑎). 
3. Determine whether SDG predicts a modified growth rate, 

𝑓𝜎8(𝑧), that differs from GR+ΛCDM, especially on large 

scales where β is important. 

This connects SDG to cosmological large-scale structure data and 

redshift-space distortion measurements. 

Precision redshift and clock-rate tests 

Section 10 established that gravitational redshift measurements 

uniquely fix the SDG clock factor to 

𝑑𝜏 =
𝑑𝜆

√𝑔𝑡𝑡
𝑒𝑓𝑓
(𝜌)

,  

ensuring exact agreement with general relativity in all presently 

tested weak-field regimes. Thus, the fundamental structure of time 

dilation in SDG is already determined. 

A natural next step is to investigate whether SDG predicts higher-

order or strong-field deviations from the GR redshift law. Such 

deviations would arise in regimes where the density coordinate varies 

rapidly or where curvature gradients exceed the weak-field 

expansion. These effects cannot be probed by Solar System tests but 

become relevant in astrophysical settings such as: 

• Gravitational redshift from neutron-star surfaces or white 

dwarfs, 

• Pulsar timing arrays sensitive to higher-order time-delay 

corrections, 

• Precision atomic clocks in variable gravitational 

environments, 

• Redshift–radius relations near the finite-curvature SDG core 

described in Sec. 11.1. 

Because SDG modifies the interior structure of compact objects 

without introducing horizons, the gravitational potential in the near-

core region differs from that of a Schwarzschild black hole. This 

opens the possibility that extreme redshift measurements in the 

strong-field regime—such as spectroscopy of accretion flows, pulsar 

timing near supermassive objects, or photon ring observables—could 

reveal measurable departures from GR. 

These precision tests provide a direct path for distinguishing SDG 

from GR beyond the linear regime, complementing the strong-field 

predictions developed in Sec. 11.1 and the cosmological predictions 

in Secs. 11.3–11.4. 

Bianchi identity and conservation in SDG 

In GR, the Bianchi identity 𝛻µ𝐺µ𝜈 =  0 implies local covariant 

conservation of stress-energy, 𝛻µ𝑇µ𝜈 =  0. In SDG, the right-hand 

side of (90) is built entirely from ρ and its derivatives. Applying 𝛻𝑖  to 

both sides of 

𝐺𝑖𝑗  =  2𝛻𝑖𝛻𝑗𝜌 + 𝛽𝜌𝑔𝑖𝑗   

and using 𝛻𝑖𝐺𝑖𝑗 =  0 yields 

0 =  2𝛻𝑖𝛻𝑖𝛻𝑗𝜌 + 𝛻
𝑖(𝛽𝜌𝑔𝑖𝑗).                                     (126) 
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This relation enforces consistency between spatial 

inhomogeneities in ρ and the homogeneous background sector 𝛽𝜌. 

Working out (126) in homogeneous FRW and in the static, spherically 

symmetric case will produce: (a) an SDG analogue of local energy 

conservation and (b) potentially, an explicit evolution equation for β 

itself. In particular, it will determine whether β can ever be strictly 

constant, or must evolve dynamically with 𝜌𝑏𝑔. 

High-density early-universe regime 

In GR, the Big Bang is a singularity. In SDG, the early universe 

is modeled as a high-but-finite 𝜌𝑖𝑛𝑖𝑡 with smooth stratification. The 

next steps are: 

• Assume an initially nearly homogeneous configuration 𝜌 =
 𝜌𝑖𝑛𝑖𝑡 − 𝜖(𝑥⃗), with ρinit large but finite. 

• Evolve (90) forward in the monotone evolution parameter λ 

to see how small perturbations 𝜖(𝑥⃗) source expansion and 

seed structure. 

• Determine whether SDG produces a nearly scale-invariant 

primordial spectrum similar to inflation, or predicts distinct 

features (e.g. large-scale suppression). 

If SDG implies a specific large-scale deviation in the Cosmic 

Microwave Background (CMB) or matter power spectrum, that 

constitutes a fossil signature of the non-singular origin. 

Direct observational discriminants:  SDG vs. GR+ΛCDM 

The two most immediate and falsifiable differences between SDG 

and standard GR+ΛCDM are: 

Evolution of the acceleration parameter 

In GR+ΛCDM, late-time acceleration is driven by a constant 

cosmological constant Λ and the deceleration parameter 𝑞(𝑧) evolves 

in a very specific way: As matter dilutes, 𝑞(𝑧) asymptotes to a 

constant negative value set by Λ and the effective equation-of-state 

parameter of dark energy is 𝑤(𝑧) ≃ 1 at all sufficiently late times [5-

7]. 

In SDG, the cosmic acceleration is governed by the background-

density coupling β, which is not a fundamental constant but is 

determined by 

𝛽 = 8𝜋𝐺 −
3𝐻2

𝜌𝑏𝑔
,  

and by its direct relation to q, 

𝛽 =
8𝜋𝐺

1+𝑞
𝑞.  

This implies: 

• SDG predicts that β (and therefore the “effective dark 

energy”) can evolve with redshift z through the evolution of 

H(z) and 𝜌𝑏𝑔(𝑧). In particular, β(z) need not be constant, 

even at late times. 

• Consequently, SDG predicts that the deceleration parameter 

q(z) (and the effective 𝑤𝑒𝑓𝑓(𝑧) of the accelerating 

component) is not forced to be redshift-independent at low 

redshift. 

Therefore, the first direct observational discriminator is: 

Test A: reconstruct q(z) and H(z) from distance–redshift relations 

(standard candles, e.g. Type Ia supernovae) and standard rulers 

(baryon acoustic oscillations) and check whether q(z) is consistent 

with a single, redshift-independent effective Λ (GR+ΛCDM), or 

whether it shows statistically significant redshift dependence in the 

effective acceleration sector (SDG). 

In other words: 

𝐺𝑅 + 𝛬𝐶𝐷𝑀: 
𝑑𝛽

𝑑𝑧
≈ 0 at late z, 𝑆𝐷𝐺: 

𝑑𝛽

𝑑𝑧
≠ 0 allowed and 

expected. 

Any robust detection of a non-zero 
𝑑𝛽

𝑑𝑧
 (or equivalently, a late-time 

𝑤𝑒𝑓𝑓(𝑧)  that deviates from -1 at low z without adding extra dark-

energy fields) would favour SDG over GR+ΛCDM. Conversely, 

extremely tight constraints consistent with a constant q(z) and 

constant 𝑤(𝑧)  =  −1 at late times would strongly disfavor SDG in 

its simplest form. 

This is a clean, already-measurable discriminator. It uses only 

background cosmology, not perturbations and it connects directly to 

β as fixed in Eq. (45). 

Finite-core compact objects vs. curvature singularities 

In GR, the classical Schwarzschild solution has a curvature 

singularity at r = 0 for any mass M > 0. The interior solution of a 

sufficiently compact object becomes singular in finite proper time. 

In SDG, for a static spherically symmetric configuration with 

𝜌 =  𝜌(𝑟), the radial structure equation 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝜌

𝑑𝑟
) ≃

𝛽

2
𝜌  

admits a regular near-center solution 

𝜌(𝑟) ≃ 𝜌𝑐 [1 −
𝛽

12
𝑟2 + 𝑂(𝑟4)] , 𝑟 → 0,  

with finite 𝜌𝑐  and finite curvature. The key point is that ρ does not 

diverge, its derivatives remain finite at r = 0 and therefore the 

curvature built from 2∇𝑖∇𝑗𝑝 + 𝛽𝜌𝑔𝑖𝑗  also remains finite. SDG 

therefore predicts that ultra-compact objects are not singular at r = 0; 

instead, they possess a finite-density core. 

This qualitative interior difference leads to quantitative, in-

principle observable consequences: 

• The “surface” or trapping region need not be an event 

horizon in the GR sense. As a result, late-time ringdown after 

merger may exhibit weak, delayed “echoes” due to partial 

reflections from the finite core rather than perfect absorption 

at an event horizon. 

• The multipole structure of the exterior field at radii just 

outside the would-be horizon can differ slightly from the 

Kerr/Schwarzschild expectations of GR, because the 

matching conditions at small r are different if there is no true 

singularity. 

Therefore, the second direct observational discriminator is: 

Test B: Search for horizon-scale deviations from pure 

Kerr/Schwarzschild behaviour in (a) ringdown portions of 

gravitational-wave signals from compact mergers and (b) very long 
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baseline interferometry (EHT-like) images of supermassive compact 

objects. Evidence of post-merger echoes or of a non-Kerr near-

horizon structure would support SDG’s finite-core prediction. 

Persistent null results with increasing sensitivity would constrain 

SDG’s parameter freedom in the strong-field regime. 

Together, Tests A and B distinguish SDG from GR+ΛCDM using 

real, current observables: One on cosmological scales (background 

expansion history) and one on strong-field astrophysical scales 

(compact objects). 

Summary of testability 

The essential point is that SDG is not only a geometric 

reinterpretation; it is predictive and falsifiable: 

• Strong-gravity structure (finite-core compact objects and 

horizon-scale physics); 

• Gravitational waveforms and ringdown; 

• Cosmological background evolution via β(z); 

• Structure growth and large-scale clustering; 

• Precision redshift and clock-rate tests in gravitational fields; 

• Early-universe initial conditions without a curvature 

singularity. 

 Each of these pathways’ links SDG directly to observations. The 

immediate priorities are to obtain the full spherically symmetric 

interior+exterior solution and to compute β(z) and q(z) for 

cosmological data comparison, as these will provide the most direct 

tests against GR+ΛCDM. 

In summary, SDG differs from GR+ΛCDM in two conceptually 

central ways which are also observationally testable. First, SDG 

replaces the fundamental cosmological constant Λ with a 

background-density coupling β (Eq. (45)) that is determined by 

(𝐻,  𝜌𝑏𝑔, 𝑞) and may evolve with redshift. This makes late-time 

acceleration a dynamical phase property of the cosmic density field 

rather than the consequence of an inserted constant vacuum energy. 

Second, SDG replaces curvature singularities with finite-density, 

finite-curvature cores in static, spherically symmetric solutions (Sec. 

10), implying that ultra-compact objects are not required to contain a 

classical singularity at r = 0. These two differences lead directly to 

observational discriminants: Possible evolution in β(z) inferred from 

background cosmology and possible horizon-scale and ringdown 

deviations from Kerr/Schwarzschild behaviour in compact merger 

remnants. In this sense SDG is not only a conceptual completion of 

GR in regimes where GR is structurally incomplete (cosmological 

constant, singularities, origin of macroscopic time), but also a 

framework with concrete, falsifiable predictions. 

From equations to data 

Appendices A–C provide a turn-key reconstruction of β(z) from 

SNe Ia, BAO and cosmic-chronometer data, delivering a direct 

discriminator between SDG (allowing 𝑑𝛽/𝑑𝑧 ≠ 0 at late times) and 

GR+ΛCDM (predicting 𝑑𝛽/𝑑𝑧 ≠ 0). Appendix D gives the 

complementary strong-field program (QNMs, echoes and EHT 

shadows) sensitive to SDG’s finite-density cores. Together, these 

enable immediate confrontation of SDG with observations within the 

same statistical workflows used for GR+ΛCDM. 

 

Discussion and Outlook 

In this work we have developed a geometric extension of general 

relativity in which gravitational dynamics are governed by a single 

stratification field ρ rather than by multiple independent energy 

components. The resulting framework preserves the geometric 

structure of Einstein gravity while providing a unified description of 

both local gravitational phenomena and large-scale cosmic 

acceleration. 

The central result of the theory is that the spacetime curvature can 

be decomposed into two geometric contributions: a stratified 

component associated with spatial inhomogeneities and a 

homogeneous component associated with the background expansion. 

This decomposition arises naturally from the field equations and does 

not require the introduction of new matter species or exotic stress–

energy components. In this sense, cosmic acceleration emerges as a 

geometric effect rather than as a consequence of vacuum energy. 

A key outcome of the analysis is that the observed cosmological 

parameters, including the present-day values of the Hubble constant 

and matter density fraction, admit a direct geometric interpretation. 

The empirical partition between matter and accelerated expansion 

corresponds to a partition of spacetime curvature between the 

stratified and homogeneous sectors of the theory. This 

reinterpretation removes the conceptual distinction between “matter” 

and “dark energy” as independent physical substances. 

The theory remains consistent with all existing experimental and 

observational constraints. In particular, it reproduces standard general 

relativity on solar system and astrophysical scales, while predicting 

only mild, scale-dependent deviations on cosmological scales. These 

deviations are controlled by a single parameter and are naturally 

suppressed except near the Hubble scale, ensuring compatibility with 

current data. 

Crucially, the framework is predictive. The same geometric 

structure that gives rise to cosmic acceleration also determines the 

scale and magnitude of deviations from general relativity in large-

scale structure formation and gravitational lensing. This provides a 

clear pathway for falsification through future surveys and precision 

cosmology. 

In summary, Stratified Density Gravity offers a self-consistent, 

geometrically motivated extension of general relativity that unifies 

cosmic acceleration and structure formation within a single 

framework. It preserves all tested limits of general relativity while 

providing a natural explanation for late-time cosmic acceleration 

without invoking additional dark components. As such, it provides a 

compelling and testable alternative framework for gravitational 

physics on cosmological scales. 

Appendix A: Methods for Test A (Background 

Expansion Reconstruction of β(z)) 

This appendix outlines an explicit, data-driven procedure for 

reconstructing the SDG background-density coupling β(z) from late-

time cosmological observables. The goal is to provide a direct, 

falsifiable test of SDG against GR+ΛCDM using existing types of 

data (supernovae, BAO and cosmic chronometers), without assuming 

any particular microphysical model for dark energy. 
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Observables and inputs 

The reconstruction uses two standard background quantities: 

➢ The Hubble expansion rate H(z) as a function of redshift. In 

practice H(z) can be obtained from: 

• Baryon Acoustic Oscillation (BAO) measurements of the 

radial BAO scale, which directly constrain H(z) in redshift 

bins. 

• “Cosmic chronometers”: differential galaxy aging, which 

estimates 𝑑𝑡/𝑑𝑧 for passively evolving galaxies and 

therefore 𝐻(𝑧) = −(1 +  𝑧)−1𝑑𝑧/𝑑𝑡. 
• Joint supernova + BAO fits (where supernovae constrain 

relative distances and BAO provides an absolute ruler). 

➢ The homogeneous background density 𝜌𝑏𝑔(𝑧), which in 

late-time cosmology is normally modeled in ΛCDM as 

𝜌𝑏𝑔(𝑧) = 𝜌𝑚,0(1 +  𝑧)
3 + 𝜌𝛬 , 

where 𝜌m,0 is today’s matter density (baryons + dark matter) and 

𝜌𝛬 is the dark-energy density inferred from fits. For the purpose of 

reconstruction, 𝜌bg(z) should be interpreted operationally as “the 

smooth background energy density that sources the large-scale 

expansion.” In SDG, this is precisely the 𝜌bg that appears in Eq. (45). 

 In practice, 𝜌m,0 is taken from standard parameter inferences 

(e.g. Ωm,0 = 8𝜋𝐺𝜌𝑚,0/(3𝐻0
2)) 

Using low-redshift data and CMB-informed 𝐻0, while 𝜌Λ is 

treated as a phenomenological late-time constant in the standard fit. 

SDG does not assume that 𝜌Λ is a fundamental constant of nature; 

instead, 𝜌bg(z) is treated as the empirical smooth background density 

inferred from data in the same way. 

Reconstructing 𝜷(𝒛) 

Given 𝐻(𝑧) and 𝜌bg(z), we compute 𝛽(𝑧) using Eq. (45), 

𝛽(𝑧) = 8𝜋𝐺 −
3𝐻(𝑧)2

𝜌𝑏𝑔(𝑧)
.                                            (127) 

This is a direct algebraic map; no differential equations are 

solved. 

Step-by-step procedure: 

➢ Choose a set of redshift bins {𝑧𝑖} covering, e.g., 0 <  𝑧 ≲
 2. 

➢ For each bin 𝑧𝑖, use BAO / chronometer / SN data to infer 

𝐻(𝑧𝑖) with uncertainties. 

➢ For each 𝑧𝑖, construct 𝜌bg(𝑧𝑖) from the best-fit smooth 

background model at that redshift. Concretely: 

• Adopt 𝜌𝑚,0 from parameter inference, 

• propagate (1 + 𝑧𝑖)
3 for the matter sector, 

• include any smooth component typically attributed to 

“dark energy” at that 𝑧𝑖 in standard fits. 

The point is not to prejudge SDG, but to use the same 

homogeneous background energy density a ΛCDM analyst would 

assign to drive H(z). 

➢ Insert H(𝑧𝑖) and 𝜌bg(𝑧𝑖) into Eq. (127) to obtain 𝛽(𝑧𝑖) and 

its uncertainty via standard error propagation. 

➢ Plot 𝛽(𝑧) versus z. 

Statistical discriminator 

The null hypothesis associated with GR+ΛCDM is that late-time 

acceleration is sourced by a constant Λ. In that case, the effective 

“dark-energy” sector is redshift-independent with equation-of-state 

parameter 𝑤(𝑧) ≃ −1 at low 𝑧 [5-7]. This implies that the 

combination playing the role of a curvature-driving vacuum term is 

constant. In SDG language, that corresponds to β behaving effectively 

as a constant at late times. 

By contrast, in SDG β is not assumed constant; instead, we have 

𝛽(𝑧) = 8𝜋𝐺 −
3𝐻(𝑧)2

𝜌𝑏𝑔(𝑧)
, 

and both 𝐻(𝑧) and 𝜌bg(z) are allowed to evolve self-consistently 

with redshift. Therefore, SDG allows 
𝑑𝛽

𝑑𝑧
≠ 0 even at low 𝑧. 

The discriminator is: 

𝑑𝛽

𝑑𝑧
|𝑧≲1 = 0 (consistent with GR+ΛCDM), 

𝑑𝛽 

𝑑𝑧
|𝑧≲1 ≠ 0 (supports 

SDG).                                                                                          (128) 

Operationally, one fits 𝛽(𝑧) to a constant across the low-z range 

and evaluates 𝜒2/d.o.f. for that constant fit. A statistically significant 

deviation from constancy (beyond observational uncertainties and 

known systematics) indicates that the late-time acceleration sector is 

evolving, which in GR requires going beyond a pure constant Λ. In 

SDG, such evolution is natural because β is tied directly to 𝐻(𝑧) and 

𝜌bg(z). 

Relation to the deceleration parameter 𝒒(𝒛) 

As derived in Eq. (58), β and the deceleration parameter q satisfy 

𝛽(𝑧) =
8𝜋𝐺

1+𝑞(𝑧)
𝑞(𝑧).                                              (129) 

This means the same test can be phrased using 𝑞(𝑧) alone, 

without 𝜌bg(z), if one reconstructs 𝑞(𝑧) directly from 𝐻(𝑧) via 

𝑞(𝑧) = −1 −
𝑑 𝑙𝑛 𝐻(𝑧)

𝑑 𝑙𝑛(1 + 𝑧)
. 

Thus, there are two equivalent observational strategies: 

Strategy 1 (background density route): infer both H(z) and 𝜌bg(z) 

and compute 𝛽(𝑧) from (127). 

Strategy 2 (kinematic route): infer 𝐻(𝑧) alone, differentiate it to 

get 𝑞(𝑧), then obtain 𝛽(𝑧) from (129). 

Strategy 2 is attractive because it uses only expansion kinematics 

and does not assume any decomposition of 𝜌bg into “matter” and 

“dark energy.” It therefore minimizes model bias. 

Interpretation 

In GR+ΛCDM, the late-time accelerating component is described 

by a constant Λ and is therefore strictly redshift-independent. In SDG, 

the large-scale curvature-driving sector is encoded in 𝛽(𝑧), which is 

determined by 𝐻(𝑧) and 𝑞(𝑧) and can in general vary with epoch. A 

statistically significant detection of 
𝑑𝛽

𝑑𝑧
≠ 0 at low redshift, in fits that 

otherwise pass standard systematics checks, would support SDG over 
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GR+ΛCDM. Conversely, tight constraints consistent with constant β 

at late times would impose quantitative bounds on SDG’s 

cosmological sector. 

This procedure demonstrates that SDG is not merely a geometric 

reinterpretation of gravity. It yields an explicitly testable, data-level 

discriminator using only late-time background cosmology, with no 

need to assume new particle species or additional scalar fields. 

Appendix B: Illustrative Reconstruction of β(z) from 

Synthetic Datasets 

In Appendix A we described how to reconstruct 𝛽(𝑧) directly 

from late-time expansion data. Here we provide an explicit worked 

illustration using two controlled synthetic universes. The purpose of 

this appendix is not to claim a fit to current data, but to demonstrate 

how an observer would decide between GR+ΛCDM and SDG using 

exactly the procedure of Appendix A. 

We consider two mock cases: 

Case 1 (GR+ΛCDM-like) 

We assume a spatially flat background with present-day Hubble 

parameter 𝐻0 = 70 𝑘𝑚 𝑠
−1 𝑀𝑝𝑐−1, matter density parameter 

Ωm,0 =  0.3 and a constant dark-energy component with 𝑤 = −1. In 

such a model 

𝐻2(𝑧) = 𝐻0
2 Ω𝑚,0(1 +  𝑧)

3 + (1 − Ω𝑚,0) , 

and the homogeneous background density is taken to be 

𝜌𝑏𝑔(𝑧) = 𝜌𝑐𝑟𝑖𝑡,0Ω𝑚,0(1 +  𝑧)
3 + 𝜌𝑐𝑟𝑖𝑡,0(1 − Ω𝑚,0), 

where 𝜌𝑐𝑟𝑖𝑡,0 = 3𝐻0
2/(8𝜋𝐺) is the present critical density. This is 

a standard ΛCDM background. We then compute 𝛽(𝑧) using Eq. 

(127). Because the “dark energy” term is exactly constant here, 𝛽(𝑧) 
comes out approximately constant for 𝑧 ≲  1. 

Case 2 (SDG-like) 

We assume the same 𝐻0 and Ω𝑚,0𝑎𝑡 𝑧 = 0, but we now let the 

acceleration sector evolve mildly with redshift, mimicking an epoch-

dependent background-density coupling. Concretely, we take 

𝐻2(𝑧) = 𝐻0
2[Ω𝑚,0(1 + 𝑧)

3 + 1 − Ω𝑚,0)(1 + 𝜖𝑧)], 

with a small drift parameter ϵ = 0.2 for illustration. Operationally, 

this looks like a slightly evolving “dark energy.” We then define 

𝜌bg(z) as the smooth background density that sources this H(z), i.e. 

 𝜌𝑏𝑔(𝑧) =
3𝐻2(𝑧)

8𝜋𝐺
    

which is exactly what an observer would infer if they assumed 

only homogeneity and isotropy, not a fundamental constant Λ. We 

then compute 𝛽(𝑧) via Eq. (127). 

Mock reconstruction table 

For each case, we choose representative late-time redshifts z = 

{0.0, 0.5, 1.0} and evaluate 𝐻(𝑧), 𝜌bg(z) and 𝛽(𝑧). We also attach 

illustrative 1𝜎 uncertainties at the few-percent level, comparable to 

current low-z BAO+SN constraints. 

Table 1 shows the result. (All values are schematic; units are 

chosen consistently so that β is reported in curvature units. The 

qualitative behaviour is the key point.) 

In Case 1 (GR+ΛCDM-like), the reconstructed β(z) is statistically 

consistent with a constant 𝐵0, within the assumed 𝛿𝐵 error bars. This 

matches the GR+ΛCDM expectation that the late-time acceleration is 

sourced by a constant Λ. 

   𝒛 = 𝟎. 𝟎 𝒛 = 𝟎. 𝟓 𝒛 = 𝟏. 𝟎 

  Case 1: GR+ΛCDM-like (constant Λ) 

𝐻(𝑧) 70 91 123 

𝜌bg(z) 1 1.73 3.2 

𝛽(𝑧) B0 𝐵0 ± 𝛿𝐵 𝐵0 ±𝛿𝐵 

  Case 2: SDG-like (mildly evolving acceleration) 

𝐻(𝑧) 70 95 135 

𝜌bg (z) 1 1.9 3.8 

𝛽(𝑧) 𝐵0 𝐵0 +0.10 𝐵0 +0.25 

Table 1: Illustrative reconstruction of β(z) from mock expansion-

rate data. Case 1 corresponds to a ΛCDM-like universe with a 

constant vacuum component. Case 2 corresponds to an SDG-like 

universe in which the effective acceleration sector drifts slowly with 

red-shift, producing an evolving 𝛽(𝑧). In Case 1, 𝛽(𝑧) is statistically 

consistent with a single value 𝐵0 across 0 < 𝑧 < 1. In Case 2, 𝛽(𝑧) 
increases with redshift at the (10%) level over the same range, which 

would appear observationally as 𝑑𝛽 = 0. Numbers shown are 

schematic and for demonstration only; the point is that even a mild 

redshift drift in the acceleration sector produces a detectable slope in 

𝛽(𝑧). 

In Case 2 (SDG-like), the same procedure returns as 𝛽(𝑧) those 

drifts with redshift, at roughly the 10–25% level out to z≃1. Such a 

trend corresponds observationally to 
𝑑𝛽

𝑑𝑧
= 0. Within SDG this is 

natural, because β is determined by H(z) and 𝜌bg (z) and can evolve. 

In GR+ΛCDM, the same behaviour would force the introduction of 

an explicitly evolving dark-energy sector beyond a constant Λ. 

Interpretation 

This exercise demonstrates how the 𝛽(𝑧) reconstruction acts as a 

discriminator: 

➢ If 𝛽(𝑧) is statistically consistent with a constant across late 

times, that is consistent with GR+ΛCDM. 

➢ If 𝛽(𝑧) shows any statistically significant redshift evolution 

at low z using only background expansion data, that 

behaviour supports SDG’s picture of a dynamical 

background-density coupling and challenges GR+ΛCDM 

unless new dark-energy degrees of freedom are added by 

hand. 

Because 𝐻(𝑧) and 𝑞(𝑧) are already measured, this analysis is 

immediately applicable to real data. 

Appendix C: Likelihood Pipeline for Observational 

Reconstruction of 𝜷(𝒛) 

Appendices A and B describe how to infer β(z) from background 

expansion data and how to interpret its trend. Here we outline the 

concrete likelihood analysis required to perform this reconstruction 

https://doi.org/10.70844/ijas.2025.2.44
https://doi.org/10.70844/ijas.2025.2.44


 Innovative Journal of Applied Science 

 
  

19 Volume 2, Issue 6 (Nov-Dec) 2025 

https://doi.org/10.70844/ijas.2025.2.44 

 

on real cosmological data. This establishes a direct statistical 

comparison between SDG and GR+ΛCDM. 

Data vector 

The late-time (low-z) background expansion is constrained by 

three core observational channels: 

Type Ia supernovae (SNe Ia) 

Provides measurements of the luminosity distance 𝐷𝐿(z) up to 𝑧 ∼
1 − 2 from standardizable candles. Modern compilations (e.g. 

Pantheon-like) report binned distance moduli µ(𝑧𝑘) with associated 

covariance matrices. 

Baryon Acoustic Oscillations (BAO) 

Provides measurements of the angular diameter distance 𝐷𝐴(z) 

and/or the Hubble rate H(z) through the BAO scale in galaxy 

clustering. Radial BAO directly constrains H(z) in discrete redshift 

bins, while transverse BAO constrains 𝐷𝐴(z). Large-scale structure 

surveys typically publish 𝐻(𝑧𝑖), 𝐷𝐴(𝑧𝑖) and a covariance matrix for 

those points. 

Cosmic chronometers 

Provides direct, nearly model-independent estimates of 𝐻(𝑧) at 

specific redshifts via differential aging of passively evolving galaxies 

(𝐻(𝑧) = −(1 + 𝑧)−1 𝑑𝑧/𝑑𝑡). These are usually given as 𝐻𝑜𝑏𝑠(𝑧𝑗) ±

𝜎𝐻,𝑗 and can be incorporated as Gaussian likelihood terms. 

Optionally, one may include a prior on 𝐻0 (the 𝑧 ⟶ 0 limit 

of 𝐻(𝑧)) or on Ωm,0 from CMB+BAO fits. The point of SDG, 

however, is that we do not assume a fundamental constant Λ. We only 

assume homogeneity and isotropy at large scales, which is the same 

assumption entering the standard background fits [5–7]. 

Model parameterization 

To make the likelihood computable we choose a minimal 

parameterization of the background expansion across the redshift 

range of interest (0 ≲ 𝑧 ≲ 2). There are two natural 

parameterizations: 

Parameterization A (GR+ΛCDM-like baseline) 

Assume 

𝐻2(𝑧) = 𝐻0
2Ω𝑚,0(1 + 𝑧)

3 + (1 − Ω𝑚,0), 

with free parameters H0, Ω𝑚,0. This is the standard spatially flat 

ΛCDM background. Here 𝛽(𝑧) is not an independent parameter; the 

model implies 𝛽(𝑧) const at low z through Eq. (127). 

Parameterization B (SDG-like). Allow a mild redshift 

dependence in the acceleration sector while preserving matter dilution 

at high z. A convenient two-parameter deformation is 

𝐻2(𝑧) = 𝐻0
2Ω𝑚,0(1 + 𝑧)

3 + (1 − Ω𝑚,0)𝛯(𝑧).  

where 

𝛯(𝑧) = 1 + 𝜖1𝑧 + 𝜖2𝑧
2. 

Here ϵ1 and 𝜖2 capture departures from a constant late-time 

acceleration. Crucially, 𝛯(𝑧) is not interpreted as a new dark-energy 

fluid with an imposed equation of state; instead, it is taken as a 

phenomenological stand-in for the evolving background-density 

coupling β(z) that appears in SDG. The parameter set is now 

{𝐻0, Ω𝑚,0, 𝜖1, 𝜖
2} . 

For each trial parameter set, we construct: 

➢ 𝐻(𝑧) directly from the expression above, 

➢ comoving distance 𝜒(𝑧) = ∫ 𝑑𝑧′/𝐻(𝑧′)
𝑧

0
 , 

➢ angular diameter distance 𝐷𝐴(𝑧) = 𝜒(𝑧)/(1 + 𝑧), 
➢ luminosity distance 𝐷𝐿(𝑧) = (1 +  𝑧)

2𝐷𝐴(𝑧), 
➢ 𝜌𝑏𝑔(𝑧) = 3𝐻

2(𝑧)/(8𝜋𝐺)  

➢ 𝛽(𝑧) from Eq. (127), 

➢ and, if desired, 𝑞(𝑧) from 𝑞(𝑧) = −1 − 𝑑 𝑙𝑛 𝐻/𝑑 𝑙𝑛(1 + 𝑧) 
to cross-check Eq. (129). 

Likelihood construction 

Once 𝐻(𝑧), 𝐷𝐴(𝑧) and 𝐷𝐿(𝑧) are predicted for a given parameter 

set, we evaluate the likelihood as follows: 

Supernovae: 

−2𝑙𝑛ℒ𝑆𝑁 = ∆µ
𝑇𝐶𝑆𝑁

−1∆µ  

where ∆µ is the vector of differences between observed and 

predicted distance moduli µ(𝑧𝑘) = 5𝑙𝑜𝑔10[𝐷𝐿(𝑧𝑘)/10𝑝𝑐] and 𝐶SN is 

the published covariance matrix. 

BAO: 

−2𝑙𝑛ℒ𝐵𝐴𝑂 = ∆𝑑
𝑇𝐶𝐵𝐴𝑂

−1 ∆𝑑  

where ∆𝑑 is the vector of residuals between observed and 

predicted {𝐻(𝑧𝑖), 𝐷𝐴(𝑧𝑖)} (or related compressed BAO 

combinations) and 𝐶BAO is the BAO covariance matrix. 

Cosmic chronometers: 

−2𝑙𝑛ℒ𝐶𝐶 = ∑
[𝐻𝑜𝑏𝑠(𝑧𝑗)−𝐻𝑚𝑜𝑑𝑒𝑙(𝑧𝑗)]

2

2𝜎2𝐻,𝑗
𝑗   

treating the chronometer points as independent Gaussians. 

The total likelihood is 

ln ℒ𝑡𝑜𝑡 = 𝑙𝑛ℒ𝑆𝑁 + 𝑙𝑛ℒ𝐵𝐴𝑂 + 𝑙𝑛ℒ𝐶𝐶 + 𝑙𝑛 ℒ𝑝𝑟𝑖𝑜𝑟, 

where ln ℒprior can impose broad physical priors such as Ωm,0 ∈ 

(0, 1) and 𝐻0 > 0. 

Model comparison: ΛCDM consistency vs SDG-like 

evolution 

The likelihood analysis proceeds in two fits: 

➢ Fit Parameterization A (ΛCDM-like, no 𝜖𝑖). This yields 

best-fit 𝐻0, Ωm,0 and an implied “constant” 𝛽(𝑧) with error 

bars propagated from the covariance of the fitted 

parameters. 
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➢ Fit Parameterization B (SDG-like, with 𝜖1, 𝜖2 free). This 

yields best-fit 𝐻0, Ω𝑚,0, 𝜖1, 𝜖2 and therefore a reconstructed 

function β(z) with uncertainties. 

We then ask two questions: 

Is 𝝐𝟏= 𝝐𝟐= 0 statistically allowed? 

If yes, then current data are consistent with a constant acceleration 

sector (i.e. GR+ΛCDM remains viable and simplest SDG is 

constrained). If no, then the data prefer mild redshift evolution in the 

acceleration sector, which in GR+ΛCDM cannot be accommodated 

without adding an explicitly dynamical dark-energy component. In 

SDG this evolution is expected, because β is determined by 𝐻(𝑧) and 

𝜌bg(z) and can vary with epoch. 

Is 
𝒅𝜷

𝒅𝒛
 at 𝒛 ≲ 𝟏 consistent with zero within the ΛCDM fit and 

significantly nonzero in the SDG-like fit? 

This is the direct implementation of Eq. (128). A statistically 

significant detection of 
𝑑𝛽

𝑑𝑧
≠ 0 at late times rules out “pure constant-

Λ” and is naturally interpreted as evidence for SDG-like behaviour. 

Formally, one can compare the two fits using standard 

information criteria (AIC/BIC) or a Bayes factor. The important 

physical point is that the observable being compared is not an exotic 

new field: it is the redshift evolution of the effective background-

density coupling β(z) that sources acceleration. 

Outcome and significance 

This pipeline converts real low-redshift background cosmology 

data (SNe Ia, BAO, cosmic chronometers) into a statistically testable 

statement: 

➢ “The effective acceleration sector is consistent with a 

constant Λ” (favouring GR+ΛCDM), 

➢ or “The effective acceleration sector must evolve with 

redshift at late times” (supporting the SDG interpretation in 

which β is a dynamical background-density coupling rather 

than a fundamental constant). 

In particular, because SDG ties β directly to (𝐻, 𝜌𝑏𝑔, 𝑞) through 

Eqs. (127) and (129), any statistically significant late-time drift in β(z) 

is not an optional extra assumption of SDG — it is a built-in 

prediction. Conversely, if β(z) is observationally indistinguishable 

from a constant across 0 ≲ 𝑧 ≲ 1, then SDG is forced into a regime 

where it mimics ΛCDM at the background level and can be 

correspondingly constrained. 

This provides a clean, likelihood-level discriminator between 

SDG and GR+ΛCDM using existing classes of cosmological data. 

Appendix D: Methods for Test B (Compact-Object 

Ringdown and Horizon-Scale Observables) 

This appendix outlines a complementary observational test of 

SDG in the strong-field regime. Where Appendix C targets the 

cosmological background, this section describes how compact-object 

observations—gravitational-wave ringdown and horizon-scale 

imaging— can probe the finite-density core predicted by SDG.  

 

Physical premise 

In GR, the end state of a stellar collapse or binary merger is a Kerr 

black hole with an event horizon and a curvature singularity at r = 0. 

In SDG, the singularity is replaced by a finite-density core with 

continuous curvature. The external geometry asymptotically 

approaches the Schwarzschild or Kerr form, but the absence of a true 

horizon allows partial reflection of gravitational waves and small 

deviations in photon orbits. 

Ringdown spectrum 

After a merger, the remnant emits damped oscillations 

characterized by Quasi-Normal Modes (QNMs). To test SDG against 

GR, one computes and compares the QNM spectra. 

Procedure 

1. Solve the axial and polar perturbation equations for the static 

SDG metric:  

𝑑2𝛹ℓ

𝑑𝑟∗
2 + [𝜔

2 − 𝑉ℓ
𝑆𝐷𝐺(𝑟)] 𝛹ℓ = 0,  

where 𝑟∗ is the tortoise coordinate and 𝑉ℓ
𝑆𝐷𝐺(𝑟) is the 

effective potential obtained from the SDG field equations. In the 

GR limit 𝑉ℓ
𝑆𝐷𝐺 →𝑉ℓ

𝑆𝑐ℎ𝑤. 

2. Impose outgoing-wave boundary conditions at spatial 

infinity and regular (finite) conditions at r = 0 instead of the 

GR condition at the event horizon. 

3. Use a Leaver-type continued-fraction method or WKB 

approximation to find the complex frequencies 𝜔𝑛ℓ. 
4. Compare the fundamental mode 𝜔20 and overtones with 

those measured in LIGO/Virgo/KAGRA events. 

Expected discriminant:  SDG predicts slightly lower damping 

(larger quality factor 𝑄 =  𝑅𝑒 𝜔/2| 𝐼𝑚 𝜔|) and possibly secondary 

“echo” pulses in the time domain, arising from partial reflection at the 

finite-density core. GR predicts pure exponential decay with no 

echoes. Detecting such echoes or frequency shifts beyond 

measurement uncertainty would constitute direct evidence of SDG’s 

finite-core structure. 

Horizon-scale imaging 

For a rotating SDG compact object, the external metric can be 

expressed as a Kerr-like solution with a modified lapse function 

𝑓𝑆𝐷𝐺(𝑟) that differs from Kerr near the would-be horizon. This 

modifies the photon-sphere radius 𝑟𝜌ℎ and thus the apparent shadow 

diameter observed by the Event Horizon Telescope (EHT). 

Procedure 

1. Integrate null geodesics for photons with impact parameter 

b = L/E in the equatorial plane of the SDG metric. 

2. Determine the critical 𝑏𝑝ℎ at which photons execute unstable 

circular orbits. 

3. Compute the corresponding angular shadow radius 𝜃𝑠ℎ =
𝑏𝑝ℎ/𝐷, where D is the source distance. 

4. Compare 𝜃𝑠ℎ and ring substructure with EHT measurements 

of M87* and Sgr A*. 
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Expected discriminant 

In GR, the shadow diameter for a Schwarzschild black hole is 

2√27𝐺𝑀/𝑐2𝐷. SDG predicts small (percent-level) corrections due to 

𝑓𝑆𝐷𝐺(𝑟) near the core. Consistency with observed EHT diameters 

constrains those corrections and hence the allowed central density 𝜌𝑐 . 
A statistically significant deviation from the Kerr prediction would 

support SDG. 

Simulation workflow 

A practical numerical study would proceed as follows: 

➢ Adopt a parameterized form of the SDG metric function 

𝑓𝑆𝐷𝐺(𝑟) consistent with the regular interior solution of Sec. 

11. 

➢ Compute 𝑉ℓ
𝑆𝐷𝐺(𝑟) and 𝑓𝑆𝐷𝐺(𝑟) analytically or numerically. 

➢ Generate synthetic waveforms using the Einstein Toolkit or 

a simplified time-domain evolution code and process them 

with LIGO/Virgo open-data pipelines to search for late-time 

echoes. 

➢ Perform raytracing simulations of photon trajectories for a 

range of spins a/M and compare the resulting shadow sizes 

to EHT data. 

Interpretation 

Agreement with GR predictions (no echoes, Kerr-consistent 

shadows) would constrain SDG parameters (𝜌𝑐 , 𝛽) and verify that 

deviations are small in the observed regime. Detection of persistent 

echoes or measurable departures from Kerr imaging would provide 

direct evidence for SDG’s finite-density interiors and dynamic 

background coupling. Together with the cosmological β(z) analysis 

of Appendix 13, these strong-field tests establish a comprehensive 

observational program for SDG. 
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