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Abstract 

Gardner’s equation relates porous rock density to the P-wave velocity and is used to analyze seismic amplitude information. The 

exponential form of the equation is convenient for this use. However, the equation was found by fitting data from basins from all over the 

world. Here a simple basin compaction model is used to show that the form of Gardner’s equation is due primarily to basin compaction which 

happens to match with variation of rock density and P-wave velocity for sandstone but often fails for shale. An alternative equation is evaluated 

and shown to be a better choice for single basin use. It is also shown that when Gassmann’s equations are combined with Nur’s critical porosity 

model the resulting equations relating the shear wave velocity to the P-wave velocity and the density to the p-wave velocity can be written in 

a way that does not involve the pore fluid bulk modulus. This may explain why so many mono-mineral rocks display a hyperbolic relation 

between the shear wave velocity and the P-wave velocity with constants independent of porosity for a given pore fluid. 
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Introduction 

Gardner’s equation that relates porous rock density to the P-wave 

velocity has been revered as, “One of the most important empirical 

(relations) in seismic prospecting ….” [1]. A web search on 

“Gardner’s Equation” finds 371,000 results some of which are recent 

technical articles mentioning the equation in the title. The equation 

plays an important role in seismic amplitude analysis, involving the 

fluid factor attribute for example and is important to velocity 

associated pore pressure prediction. Its accuracy is thereby connected 

to economics associated with reservoir development and production 

and aquifer evaluation. It is understood that this equation is influenced 

by compaction. Here evidence is presented to show how the equation 

depends on compaction and that it may depend strongly on the 

compaction characteristics of a basin in some cases. This is done 

using the Gassmann-Nur model for porous rock, discussed later under 

heading Quartz-Shale Composite Models, together with a basin 

compaction model following Aplin [2]. Finally, evidence is presented 

in support of an alternative equation relating bulk density to P-wave 

velocity. Justification is provided for the use, with low permeability 

rocks, of Gassmann’s equations combined with Nur’s critical porosity 

model to derive the subject relations. This justification requires 

replacing the fluid bulk modulus with other physical quantities 

associated with the rock. 

Gardner’s equation is often used to roughly estimate rock density 

from the rock P-wave velocity 𝑉𝑝 [3]. The equation has the convenient 

form of 

𝜌 = 𝜌0𝑉𝑝
1 4⁄

, 𝜌𝑜 = 1741(𝑘𝑚 𝑠⁄ )
−1

4                     (1) 

Figure 1 shows Gardner’s relation that essentially separates the 

sandstones, red squares, from shales, green squares digitized from  

 

Castagna et al. [1]. The Violet (kaolinite) and Cyan (smectite) curves 

are from Mondol et al. [4]. 

 

Figure 1: A - Red squares are sandstones, B - green squares are 

shales, C - Dark Blue Curve is Gardners equation, D - Violet curve is 

the laboratory measurement for kaolinite, E-Cyan curve is the 

laboratory measurement for smectite. 
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Method 

In Figure 2 is shown data, red circles, from two wells in the same 

basin which curve in the wrong direction to be following Gardner’s 

relation. In addition, the black circles are a fit of the equation. 

𝜌 =
𝐶𝜌

1−(
𝑠𝑉𝑝

𝑉𝑏
)

2, with 𝑉𝑏 = 1500 𝑚 𝑠⁄                                    (2) 

 

Figure 2: Red circles: Well data from a single basin - DOE 

Pleasant Bayou #1 and #2 wells, Brazoria Co., Texas (red circles) 

digitized from Castagna et al. Figure D-4, Black circles: Equation (2) 

from Gassmann-Nur model [1]. 𝐶𝜌 = 2.0568, 𝑠 = 0.1846- compare 

with values in Higginbotham et al. for shale and in Table 1 [7]. 

Here the constant 𝑉𝑏 is used to scale 𝑉𝑝 so that 𝑠 is a unitless 

constant. Equation (2) and a hyperbolic relation between 𝑉𝑝 and 𝑉𝑠, 

are the result of combining Gassmann’s equations with Nur’s critical 

porosity model called Gassmann-Nur model here [5,6,7]. 𝐶𝜌 and 𝑠 are 

constant for a given mineral. Formulas for these constants that depend 

only on the mineral grain bulk modulus, shear modulus, fluid bulk 

modulus and rock critical porosity are provided by Higginbotham et 

al. [7]. 

One important difference between the data in Figures 1 and 2 is 

that the data plotted in Figure 1 is from a variety of basins from all 

over the world while the data in Figure 2 is from a single basin. The 

goal here is to provide evidence that the major structure of Gardner’s 

equation is due to the compaction characteristics of the basin from 

which each data point was taken and that, for a given basin, equation 

(2) is more appropriate. 

Sandstone 

The curves in Figure 3 were computed from published elastic 

constants for quartz using a fluid density of 1.02 and a fluid bulk 

modulus of 2.5 GPa. The model provides an excellent fit to the data. 

Since both the bulk modulus 𝐾and the shear modulus 𝜇 are involved 

in computing the P-wave velocity 𝑉𝑝 it is reasonable to assume that 

the Gassmann-Nur model works well for clean silicon sandstone even 

without similar data for the S-wave velocity 𝑉𝑠. So, equation (2) 

should work well to describe clean silicon sandstone. 

 

Figure 3: Velocity versus porosity measurements (purple 

squares) for Clean Silicon Sandstone as reported by Nur et al. [8]. The 

curves were computed from the GN model with critical porosity set 

at 0.36 and using published values for quartz elastic constants. The 

blue line deviating toward lower velocity is for quartz with some clay 

content. 

Shale 

Applying Gassmann’s equations to Shale rocks presents a 

problem because shale is porous but not very permeable. Gassmann’s 

equations apply at low frequency where, quoting Mavko et al., “there 

is sufficient time for the pore fluid to flow and eliminate wave-

induced pore -pressure gradients ….” [9]. 

The fluid density is not likely to change significantly due to pore 

pressure so the problem with Gassmann’s equations must be 

associated with variations in the pore fluid bulk modulus due to 

induced pore-pressure gradients. 

Avoiding 𝑲𝒇 

Equation (A5) of Higginbotham et al. can be solved for the pore 

fluid bulk modulus 𝐾𝑓 to get a definition of an effective fluid bulk 

modulus,  

𝐾𝑓−𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐾𝑚 𝑑 (1 + 𝑑)⁄  , 𝑑 = 𝜙𝑐′ − 𝜙𝑐                           (3) 

in terms of the mineral grain bulk modulus 𝐾𝑚 the critical 

porosity of Nur, 𝜙𝑐 and the quantity 𝜙𝑐 ′ [7]. With reference to Figure 

4, the quantity 𝜙𝑐 corresponds to the negative reciprocal of the slope 

of the rock shear modulus divided by the mineral grain shear modulus 

when plotted against porosity. The quantity 𝜙𝑐′ corresponds to the 

negative reciprocal of the slope of the rock bulk modulus divided by 

the mineral grain bulk modulus when plotted against porosity. The 

equation applies only when the porosity is less than Nur’s critical 

porosity, in other words for any load bearing rock matrix. The 

quantities defining 𝑑 in equations (3) are well defined measurable 

physical quantities. They can be read directly from a graph such as 

the one in Figure 4. 𝐾𝑚 is know if the mineral making up the rock 

matrix is known. These two physically measurable quantities replace 

𝐾𝑓  in all the equations. Although 𝐾𝑓  ceases to exist in the equations it 

can be used, along with 𝐾𝑚, to approximate 𝑑, 

𝑑 ≈ 𝐾𝑓 (𝐾𝑚 − 𝐾𝑓)⁄ .                                                                     (4) 

https://doi.org/10.70844/ijas.2025.2.37
https://doi.org/10.70844/ijas.2025.2.37


 Innovative Journal of Applied Science 

  3 Copyright © 2025 | ijas.meteorpub.com 
Volume 2, Issue 5 (Sep-Oct) 2025 

https://doi.org/10.70844/ijas.2025.2.37 

 

This will be a good approximation for permeable rocks. It also 

turns out to be a good approximation for the smectite data of Mondol 

et al. but not quite as accurate for representing 𝑑 for the kaolinite data 

and fails to predict 𝑑 for dry rocks for kaolinite [4]. In that case 𝑑 

must be measured from a graph as in Figure 4. 

 

Figure 4: Here the data points of mondol et al. (2008) for 

Smectite and Kaolinite are fit with two connected straight lines that 

meet at what I've called a "crush point porosity" which probably 

corresponds to the consolidation threshold porosity of Vernik and 

Kachanov [10,11]. 

Claim: When Nur’s critical porosity model is combined with 

Gassmann’s equations and equation (3) is used to eliminate the 

explicit appearance of the fluid bulk modulus in the equations, the 

effects associated with fluid properties vanish to first order. Here this 

will be called the modified Gassmann-Nur model. 

 As a result, this modified Gassmann-Nur model applies to a wide 

variety of rocks and at high frequency. The “catch” is that the physical 

quantity 𝑑 is involved in the new equations and the direct connection 

to fluid bulk modulus is lost.  

Of course, this does not prevent the use of Gassmann’s equations 

alone for such things as fluid substitution for example. It does 

significantly extend the usefulness of Gassmann’s equations when 

combined with Nur’s model. In particular it justifies the form of 

equation (2) whenever 𝜙𝑐 and 𝜙𝑐′ are constant, or approximately 

constant for a wide variety of rocks and for shale rocks made up of 

Smectite or Kaolinite in particular - see Figure 4 (for further evidence 

see Higginbotham (supplemental material slides 14-18) [12]. 

Quartz-shale composite models 

A method of modeling overburden compacted composite rocks 

made up of quartz and shale is provided by Higginbotham (Appendix 

II) [12]. This method, as used here, finds density and velocity by using 

Nur’s critical porosity model combined with the equation provided 

by Aplin, relating porosity to vertical effective stress through a 

compaction coefficient 𝛽 [2]. This information is then tested against 

equation (2) above which combines Nur’s model with Gassmann’s 

equations. The question is, “Will this modeling combining Nur’s 

model with Aplin’s relation agree with equation (2) combining Nur’s 

model with Gassmann’s equations? If so, what does this indicate 

about Gardner’s equation?” 

Results 

Results of modeling are shown in Figure 5 with the data points 

for sandstone and shale plotted in the foreground. These curves for 

smectite-quartz composite rocks and kaolinite-quartz composite 

rocks account for all of the data points that are roughly fit by 

Gardner's relation with the high percentage sand cases above 

Gardner’s relation and the low percentage sand below – also in 

agreement with Gardner. The modeled density matched well with the 

density computed using equation (2) for models represented in Figure 

5, see Figure 6.  Note that Figure 6 includes cases for both the 

effective fluid bulk modulus and for the actual fluid bulk modulus. 

The deviation for kaolinite-quartz composite rock was roughly twice 

as large as for smectite-quartz composite rock but both are small. 

 

Figure 5: Red and green circles are measured values for 

sandstone and shale. Color lines are Quartz - Shale earth models with 

different values of compaction coefficient. Labeling: % Smectite (S) 

or % Kaolinite (K), followed by βthe compaction coefficient. Thick 

black line is Gardner’s equation. Discontinuity in slope is associated 

with the crush point porosity of Figure 4. 

 

Figure 6: Here the density computed using equation (3) is plotted 

against the density computed by the earth models for some of the 

cases shown in Figures 4 as well as others. The match is very good to 

excellent. Labeling: % Smectite (S) or % Kaolinite (K), followed by 

𝛽, E indicates the use of an effective fluid bulk modulus. Otherwise, 

the fluid bulk modulus came from Castagna et al. [1]. 
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Conclusion 

Modified Gassmann-Nur model 

An effective fluid bulk modulus replaced the actual fluid bulk 

modulus to implement the modified Gassman-Nur model which has 

no explicit dependence on the fluid bulk modulus. Combining 

Gassmann’s equations with Nur’s critical porosity model leads to 

equation (2), as well as a hyperbolic equation relating 𝑉𝑝 to 𝑉𝑠, both 

involving constants that are independent of porosity for a given 

mineral and pore fluid. These two equations and the formulas 

representing the associated constants comprise the Modified 

Gassmann-Nur model. Here attention has been focused on equation 

(2) in an effort to better understand Gardner’s equation. The absence 

of the fluid bulk modulus provides justification for the use of 

modified Gassmann-Nur model at high frequency for low 

permeability rocks and also explains the fact that many rocks satisfy 

the hyperbolic relation between the P-wave velocity and S-wave 

velocity (Higginbotham, supplemental material, slides 3-18 and 

Higginbotham et al.,) [12,13]. The overwhelming evidence indicates 

that this is common rather than the exception. Exceptions do exist and 

probably correspond to cases where the quantity 𝑑 deviates 

significantly from a constant value. 

Gardner’s equation 

Gardner’s equation is shown to be representative of the trend 

associated with how density changes with velocity as basins having 

different compaction coefficients are compared. Figure 5 shows that 

the slope of Gardner’s equation and equation (2) are similar for high 

percentage sandstone rocks. So, sandstone reservoirs can be 

represented by Gardner’s equation as well as by equation (2). 

However, shale reservoirs do not match well with the slope of 

Gardner’s equation. For a specific reservoir, equation (2) is the more 

appropriate relation. 
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Appendix A: Path to Gassman’s Equations 

A quick path to Gassmann’s equations 

Note: I found some hints in text on the internet, source lost to 

mind now, that led me to this path to Gassmann’s equation for Bulk 

Modulus. So, the logic is mine but the inspiration is not. 

There are more rigorous derivations of Gassmann’s equations 

[14] that make the point that Gassmann does not assume that the shear 

modulus is constant (i.e., mechanically independent of the presences 

of the saturating fluid) which is an assumption made here near the end 

of this path. 

Consider a uniform porous cube of mono-mineral rock that is 

permeable having volume 𝑉. 

Suppose that the load bearing rock frame is fraction 𝛽 of the 

volume of the porous rock with pores filled with fluid. The remaining 

volume fraction consists of the fluid that fills the rock pores together 

with any loose mineral grains within the pores more or less suspended 

in the fluid – at least not contributing to the rigidity of the rock frame. 

Now suppose that the rock is uniformly compressed creating 

strain 𝛥 𝑉 𝑉⁄ . Since the compression is uniform the fractional change 

in volume of the load bearing rock matrix portion and the fractional 

change in the volume of the fluid and suspended mineral particle 

portion will be the same and equal to the fractional change in volume 

of the full rock volume, or 

(
𝛥𝑉

𝑉
)

𝑓𝑟𝑎𝑚𝑒
= (

𝛥𝑉

𝑉
)

𝑓𝑙𝑢𝑖𝑑𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
=

𝛥𝑉

𝑉
                                 (1)      

But the rock frame and the pore fluid will resist being 

compressed. The compression stress (pressure) on the rock 𝑃 will be 

the sum of the stress on the load bearing rock matrix portion 𝑃𝑚 and 

the stress on the fluid suspension portion 𝑃𝑠, weighted by the 

fractional amount of each 

𝑃 = 𝑃𝑚 + 𝑃𝑠                                                                           (2) 

𝐾𝑤
𝛥𝑉

𝑉
= 𝛽𝐾𝑚

𝛥𝑉

𝑉
+ (1 − 𝛽)𝐾𝑠

𝛥𝑉

𝑉
,                                         (3) 

with 𝐾𝑤 representing the bulk modulus of the wet (fluid saturated) 

rock, 𝐾𝑚 representing the bulk modulus of the mineral grains forming 

the rock frame and with, 𝐾𝑠 the effective bulk modulus of the fluid 

suspension, to be determined. 

Then 

𝐾𝑤 = 𝛽𝐾𝑚 + (1 − 𝛽)𝐾𝑠.                                                        (4) 

Now consider the fluid suspension portion of the rock. This is the 

portion composed of the fluid under pressure 𝑃𝑓 and loose mineral 

grains within this fluid. The loose mineral grains will also experience 

the same pressure as the pore fluid. The total change in volume for 

this portion of the rock will be the sum of the change in volume of the 

fluid and the loose mineral grains, 

𝑃𝑓

𝐾𝑠
= (

𝛥𝑉

𝑉
)

𝑓𝑙𝑢𝑖𝑑𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
=

𝛥𝑉𝑓𝑙𝑢𝑖𝑑+𝛥𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠

𝑉𝑓𝑙𝑢𝑖𝑑𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
=

𝛥𝑉𝑓𝑙𝑢𝑖𝑑

𝑉𝑓𝑙𝑢𝑖𝑑𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
+

𝛥𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠

𝑉𝑓𝑙𝑢𝑖𝑑𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
.                                               (5) 

𝑉𝑓𝑙𝑢𝑖𝑑𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 = (1 − 𝛽)𝑉.                                                (6) 

𝑉𝑓𝑙𝑢𝑖𝑑 = 𝜙𝑉.                                                                          (7) 

𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠 = 𝑉 − 𝑉𝑓𝑙𝑢𝑖𝑑 − 𝑉𝑓𝑟𝑎𝑚𝑒 = 𝑉(1 − 𝜙 − 𝛽).         (8) 

Using equation (6) in equation (5) leads to, 

𝑃𝑓

𝐾𝑠
=

𝛥𝑉𝑓𝑙𝑢𝑖𝑑

(1−𝛽)𝑉
+

𝛥𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠

(1−𝛽)𝑉
.                                                     (9) 

Now use equations (7) and (8) to replace Vin equation (9) to get, 

𝑃𝑓

𝐾𝑠
=

𝛥𝑉𝑓𝑙𝑢𝑖𝑑

(1−𝛽)
𝑉𝑓𝑙𝑢𝑖𝑑

𝜙

+
𝛥𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠

(1−𝛽)
𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠

1−𝜙−𝛽

.                                        (10) 

Then using 𝑃𝑓 𝐾𝑓⁄ = 𝛥 𝑉𝑓𝑙𝑢𝑖𝑑 𝑉𝑓𝑙𝑢𝑖𝑑⁄  fluid and, recalling that the 

loose mineral grains experience the same pressure as the pore fluid, 

𝑃𝑓 𝐾𝑚⁄ = 𝛥 𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠 𝑉𝑙𝑜𝑜𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑠⁄  gives, 

𝑃𝑓

𝐾𝑠
=

𝑃𝑓𝜙

(1−𝛽)𝐾𝑓
+

𝑃𝑓(1−𝜙−𝛽)

(1−𝛽)𝐾𝑚
, or 

1

𝐾𝑠
=

1𝜙

(1−𝛽)𝐾𝑓
+

1(1−𝜙−𝛽)

(1−𝛽)𝐾𝑚
.       (11) 
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Now returning to equation (4) notice that when the fluid is drained 

from the pores then the fluid suspension portion, represented by the 

term involving 𝐾𝑠 vanishes and 𝐾𝑤 becomes 𝐾𝑑 the dry or drained 

rock bulk modulus, 

𝐾𝑑 = 𝛽𝐾𝑚.                                                                            (12) 

Now solving equation (12) for βand equation (11) for 𝐾𝑠 and 

using these in equation (4) leads to 

Gassmann’s equation in the form, 

𝐾𝑤 = 𝐾𝑑 +
(1−

𝐾𝑑
𝐾𝑚

)
2

𝜙

𝐾𝑓
+

1−𝜙

𝐾𝑚
−

𝐾𝑑

𝐾𝑚
2

.                                                          (13) 

The other equation by Gassmann is, 

𝜇𝑤 = 𝜇𝑑                                                                                (14) 

which says that the fluid saturated rock shear modulus is equal to 

the dry (or drained) rock shear modulus. If we assume that the fluid 

filling the rock pores does not support shear stress then this result 

appears to be obvious since a shear stress on the porous rock does not 

change the rock volume to first order. 
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