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Abstract 

In applied machine learning, concept drift, which is either gradual or abrupt changes in data distribution, can significantly reduce model 

performance. Typical detection methods, such as statistical tests or reconstruction-based models, are generally reactive and not very sensitive 

to early detection. Our study pro- poses a hybrid framework consisting of Transformers and Autoencoders to model complex temporal dynamics 

and provide online drift detection. We create a distinct Trust Score methodology, which includes signals on (1) statistical and reconstruction-

based drift metrics, more specifically, PSI, JSD, Transformer-AE error, (2) prediction uncertainty, (3) rules violations and (4) trend of classifier 

error aligned with the combined metrics defined by the Trust Score. Using a time- sequenced airline passenger data set with synthetic drift, our 

proposed model allows for a better detection of drift using as a whole and at different detection thresholds for both sensitivity and 

interpretability compared to baseline methods and provides a strong pipeline for drift detection in real time for applied machine learning. We 

evaluated performance using a time-sequenced airline passenger dataset having the gradually injected stimulus of drift in expectations, e.g. 

permuted ticket prices in later batches, broken into 10-time segments. In the data, our results support that the Transformation-Autoencoder 

detected drift earlier and with more sensitivity than the autoencoders commonly used in the literature and provided improved modeling over 

more error rates and logical violations. Therefore, a robust framework was developed to reliably monitor concept drift. 

Keywords: Real-time detection, Trust score, Concept drift, CatBoost classifier, Autoencoder (AE), Transformer-Autoencoder (TAE), 

Population Stability Index (PSI), Jensen–Shannon Divergence (JSD), Prediction uncertainty, SHAP interpretability

Introduction

Machine learning models used in real world systems, such as 

aviation or finance, suffer from deterioration in performance and 

dependability due to concept drift, the alteration of the distribution of 

the data over time. Concept drift can occur if the evolution of the data 

distribution is not detected, which can affect what is relevant 

information for the subsequent prediction activity. Concept drift can 

occur if the evolution of the data distribution is not detected, which 

can affect what is relevant information for the subsequent prediction 

activity. In their general form, traditional drift detection methods (for 

instance, statistical comparisons such as t-tests or KS tests and 

reconstruction-based methods can tend to be slow to take action and 

they do not necessarily factor into account complex dynamics that 

occur in the temporal and feature-level structure of the distribution 

[1]. 

This paper outlines a possible hybrid architecture for concept drift 

detection, which combines temporal modeling based on transformer 

architectures and autoencoders. The transformer-based model 

captures contextual dependencies in a feature- transformed space, 

while the autoencoder provides us with an anomaly indicator based 

on reconstruction [2]. Together, we improve the sensitivity to the 

relatively subtle or significant drifts in streaming data. We applied 

this approach to the time-stamp-ordered stream of an airline 

passenger data set. We added synthetic drift in later batches of the 

data set to model a real-world setting [3]. Additional components such 

as a baseline classifier and prediction uncertainty analysis and domain 

rules using the baseline pre- diction budgets supported the model and 

helped develop a complete picture of model stability. The results 

illustrated that the proposed hybrid approach offered better drift 

detection than traditional detection methods and also offered faster 

data to search for intervention. SHAP analysis also improved the 

explanation of the drift and mode for practical monitoring deployed 

in pipelines. 

Related work 

New machine learning research geared for dynamic environments 

has illuminated the issues of drift detection and model trust. In their 

work, developed an anomaly detection framework based on an 

autoencoder that monitors reconstruction errors to detect concept drift 

in streaming data [4]. This research effectively established the 

benefits of incremental learning, on-the-fly, in real-time applications, 

demonstrating that unsupervised deep learning can be utilized to 

assess data distribution change without any initial labeling. In a 

similar vein, a drift-adaptive DDoS attack detection frame- work for 

IoT systems that applies dynamic ensemble weighting strategies to 

maintain the accuracy of model predictions as threats evolve [5]. This 
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research further showcased the usefulness of drift-aware classifiers 

considering real-world critical infrastructures. 

In addition to these technical contributions a range of model 

monitoring methods are described as practical applications of the 

Population Stability Index (PSI) to quantify and respond to data drift 

in operational systems and contexts [6]. These studies demonstrate 

the need for sufficient monitoring tools beyond model validation that 

are capable of maintaining robust models over time. In general, these 

studies provide foundational approaches to uncertainty and change in 

data streams but do not converge drift detection with trust 

quantification, a gap that our hybrid framework aims to fill. 

Methodology 

Dataset and preprocessing 

The data set used in this study was a synthetic data set 

representing airline passengers and the information it used, such as 

ticket price, flight status, distance traveled, type of check-in and 

demographics. All of this can be used to create a multiclass 

classification model and perform a robust temporal drift evaluation. 

Data cleaning and standardization 

The first step with the full dataset was to check for issues and 

anomalies. Records with unreasonable values were removed (e.g., 

departure and arrival airports were the same). Quantitative attributes, 

for example distance, delay and price, were truncated to plausible 

values based on logical parameters and quantiles of the attribute 

distributions. 

Timestamp construction and batching 

In order to allow the data to represent the temporal evolution, we 

identified a synthetic timestamp using departure month, day and hour. 

This allowed the samples to be ordered chronologically. 

Drift injection 

Synthetic concept drift was injected to test the model’s robustness 

against changes to the data distributions. That simulated how in the 

real-world prices, seasonal shifts and customer behavior change, 

could change the distribution of labeled data. So, for batches 5 

through 10, I randomly shuffled the Price USD column to add another 

band of drift while keeping the distribution of the other features the 

same. 

Classification and uncertainty estimation 

Baseline classifier 

We changed the core classifier from a simple Random Forest to a 

CatBoost classifier, which is much more appropriate for mixed-type 

features and imbalanced multiclass problems [7]. Again, our model 

trained on 80% and validated on 20% of the data. This performed 

better because it was able to effectively rely on categorical data, the 

regularization ability of CatBoost and offer improved gradient-

boosting results compared to decision trees. 

Prediction uncertainty measurement 

The uncertainty in the predictions was measured using softmax 

margins. The difference between the two main probabilities was used 

as a proxy of confidence. The smaller the margin, the more uncertain 

we were; these small margins were applied as early warnings that the 

model was degrading in the incoming data batches. 

Drift detection models (with mathematical formulations) 

Statistical drift metrics 

To quantify changes in the input feature distribution over time, 

we use two statistical divergence measures. 

(a) Population Stability Index (PSI). 

Let Ei and Ai represent the proportion of observations in bin i 

from the expected (training) and actual (test) distributions, 

respectively. Then, PSI is defined as: 

𝑃𝑆𝐼 = ∑ (𝐴𝑖 − 𝐸𝑖)𝑛
𝑖=1  .  𝐼𝑛 (

𝐴𝑖

𝐸𝑖
)  

A PSI value greater than 0.2 typically indicates moderate to 

severe drift. 

 

(b) Jensen–Shannon divergence (JSD) 

Let P and Q be two probability distributions (e.g., feature 

histograms) over a discrete variable. The JSD is a symmetrized and 

smoothed version of Kullback–Leibler (KL) divergence: 

𝐽𝑆𝐷(𝑃||𝑄) =
1

2
𝐷𝐾𝐿(𝑃||𝑀) +

1

2
𝐷𝐾𝐿(𝑄||𝑀)  

Where 𝑀 =
1

2
(𝑃 + 𝑄) 

This measure is bounded between 0 (identical) and 1 (maximally 

different). 

Reconstruction-based drift via autoencoders 

An autoencoder neural network was trained in initial batches to 

learn a compact representation of clean data [4]. The auto encoder 

(reconstruction) error was monitored during inference on subsequent 

batches. A significant increase in average reconstruction loss could 

be interpreted as detecting data drift, especially caused by corrupted 

or altered feature relationships (e.g., price shuffle). 

Given an input vector 𝑥 𝜖 ℝ𝑑, an autoencoder learns a function 

𝑓: ℝ𝑑 → ℝ𝑑 such that the reconstruction loss is minimized: 

𝐿𝐴𝐸 = ∥ 𝑥 − 𝑥̂ ∥2
2  

The drift is detected when the mean reconstruction error on new 

batches increases significantly: 

∆𝐿𝐴𝐸 = 𝔼𝑥~𝐵𝑎𝑡𝑐ℎ𝑡
[∥ 𝑥 − 𝑓(𝑥) ∥2

2] − 𝔼𝑥~𝑇𝑟𝑎𝑖𝑛[∥ 𝑥 − 𝑓(𝑥) ∥2
2]  

Transformer-autoencoder for contextual drift 

To enhance the sensitivity of the model to sequential and 

contextual dependencies, we integrate a transformer block within the 

encoder [9]. The core of the attention mechanism is defined as 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  

Where: 
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Q, K, V are query, key and value matrices derived from input 

features. 

dk is the dimension of the key vectors. 

The Transformer-AE combines this contextual encoding with a 

decoder to reconstruct input. Reconstruction error is computed 

similarly, but now accounts for inter-feature relationships. 

CatBoost classifier justification 

CatBoost andex used gradient boosting algorithm, has been 

applied because of its support for categorical features, its relative 

performance advantages for tabular data and its strong resistance to 

overfitting. In addition, by using CatBoost, preprocessing is 

simplified by using missing values and categorical encoding (which 

is handled internally). Because it uses ordered boost, it ignores the 

prediction shift and outperforms traditional tree-based models in all 

of our experiments, while achieving an accuracy greater than 90% in 

the flight status classification task [10] (7). 

Prediction uncertainty via softmax margin 

Given a classifier output vector 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑘]  ∈  ℝ𝑘, where 

pi is the softmax probability of class i, the uncertainty u for each 

prediction is calculated as follows: 

𝑢 = 𝑝𝑚𝑎𝑥 − 𝑝𝑠𝑒𝑐𝑜𝑛𝑑−𝑚𝑎𝑥  

A lower value of u implies higher uncertainty and a batch-wise 

average of u is used in trust scoring. 

Composite trust score 

We define the trust score for batch t as: 

𝑇𝑟𝑢𝑠𝑡𝑡 = 1 − [𝛼. 𝐷𝑡 + 𝛽. 𝑈𝑡 + 𝛾. 𝑅𝑡 + 𝛿. 𝐸𝑡]  

 Where: 

Dt: Normalized drift score (average of PSI, JSD and AE error). 

Ut: Average prediction uncertainty. 

Rt: Rule violation rate. 

Et: Classification error rate. 

α, β, γ, δ: Tunable weights summing to 1. 

This formulation allows flexible tuning of the sensitivity to 

different failure signals [1]. 

Algorithm 

Algorithm 1 hybrid transformer-autoencoder with 

CatBoost-based drift and trust scoring 

Require: Dataset D with timestamped flight records. 

Ensure: Batch-wise trust scores and drift-sensitive classification 

reliability. 

Preprocessing 

• Clean inconsistencies (e.g., same source and 

destination, outliers). 

• Standardize categorical features (lowercase, trim 

spaces). 

• Impute missing values using mode/median strategies. 

Feature engineering 

• Compute derived metrics such as distance per_Minute, 

Price_per_Mile, etc. 

• Construct synthetic timestamps and sort dataset D by 

time 

• Partition into k = 10 batches: B1, B2, . . . , B10 

• for i = 6 to 10 do 

• Inject synthetic drift by shuffling Price USD in batch Bi 

• end for 

Resampling: 

• Apply SMOTE to balance classes in training set. 

• Train CatBoost Classifier C on 80% of D using encoded 

and scaled features. 

Train drift detectors: 

Train Autoencoder (AE) and Transformer-Autoencoder (TAE) 

on Xtrain with MSE loss 

for each batch Bi do 

Predict labels yi → C(Bi) and compute accuracy Ai 

Compute statistical drift: PSI and Jensen-Shannon divergence for 

Price USD 

Calculate AEerror and TAEerror using reconstruction loss 

Compute uncertainty score Ui using softmax margin from 

classifier 

Evaluate rule violations Ri (e.g., distance/duration constraints) 

Compute composite trust score: 

𝑇𝑖 = 1 − (𝛼. 𝐷𝑖 + 𝛽. 𝑈𝑖 + 𝛾. 𝑅𝑖 + 𝛿. 𝐸𝑖)  

Where: 𝐷𝑖 =
𝑃𝑆𝐼𝑖+𝐽𝑆𝐷𝑖+𝑇𝐴𝐸𝑒𝑟𝑟𝑜𝑟,𝑖

3
, 𝐸𝑖 = 1 − 𝐴𝑖  

end for 

Return: Trust scores 𝑇 = {𝑇1, 𝑇2, … , 𝑇10}

 

 

 

 

https://doi.org/10.70844/ijas.2025.2.32


 Innovative Journal of Applied Science 

  4 Copyright © 2025 | ijas.meteorpub.com Volume 2, Issue 4 (Jul-Aug) 2025 

https://doi.org/10.70844/ijas.2025.2.32 

Visualizations 

 

 

 Figure 1: Visual comparisons demonstrating the advantages of our hybrid Transformer- Autoencoder framework in drift detection, 

uncertainty quantification and model interpretability. Note: (A) Normalized Trust Score vs. Time, demonstrating real-time reliability 

assessment. (B) Correlation Heatmap of drift metrics, uncertainty and error rates. (C) Drift Score vs. Error Rate, showing enhanced sensitivity 

of Transformer-Autoencoder. (D) SHAP Feature Importance, providing interpretability for the delayed class. 

Evaluation Metrics 

Comparison with existing literature 

To validate the novelty and superiority of our framework, we 

compared our approach with three recent state-of-the-art works in the  

 

field of concept drift detection and trust quantification. Table 1 

summarizes the key differences and advantages of our work over 

others in terms of methodology, evaluation and explainability (Table 

2).
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Paper Technique Limitations Our contribution 

Li et al. 

(2023) [6] 

AE-based anomaly detection for drift via 

reconstruction loss 

No contextual modeling, no 

explainability (XAI), lacks hybrid 

scoring 

Combined transformer-AE for sequential and 

contextual drift + XAI 

Beshah et al. 

(2024) [7] 

Drift adaptive detection using ensemble 

weighting in IoT 

Domain-specific (IoT), lacks general-

purpose trust framework 

Generalizable trust quantification pipeline 

across domains 

Khademi  et 

al. (2023) [8] 

PSI-based monitoring for drift in deployed 

ML systems 

No real drift injection, lacks model 

explainability and hybrid detection 

Real and synthetic drift + composite trust 

metrics + SHAP visualization 

Ours (2025) 

Hybrid Transformer-AE + Trust Score (Drift 

+ Uncertainty + Error + Rule violations)  - 

First to integrate explainable drift detection 

and real-time trust quantification pipeline 

Table 1: Comparison with related works (post-2023). 

Model Detection accuracy (%) Detection latency (batches) F1 score 

PSI + JSD (Statistical) 76.3 3.1 0.74 

Autoencoder Only 82.7 2.4 0.79 

Transformer Only 84.9 2.1 0.82 

CatBoost + Drift Detection (Ours) 90.6 1.2 0.91 

Table 2: Performance comparison of drift detection models. 

Discussion 

Overall, our findings support the hypothesis that the combination 

of statistical, contextual and explainable components improves both 

the sensitivity and interpretability of real-time drift detection systems 

[6,8]. Our results demonstrate that the hybrid 8 Transformer-

Autoencoder (TAE) architecture has improved real-time drift 

detection in dynamic environments compared to traditional statistical 

measures like PSI or JSD, which are often reactive in detecting shifts 

[4]. 

TAE allows us to capture the temporal dependencies to prioritize 

and detect drift quickly and with more accuracy [9]. Softmax margins 

as a method of quantifying uncertainty ensured more robustness of 

the architecture, especially in cases of ambiguity where class 

separation is very low. The attention mechanism helps this model 

extract the most relevant relationships between features over time 

contrasting entirely from pure autoencoder approaches [4]. 

Explainable AI (through the use of SHAP values) was especially 

valuable because it added interpretability to the decision making of 

the model, similar to recent research on interpretable anomalies 

detection [8]. 

Our group also observed that the composite Trust Score (which 

captures drift, error, uncertainty and rule violations) offers a more 

rounded view of model reliability in downstream streaming 

applications. This aligns with the views of many researchers that 

emphasize the need for holistic trust frameworks in production ML 

systems [6]. 

In conclusion, our findings reinforce the hypothesis that the 

integration of statistical, contextual and explainable signals 

substantiates the monitoring of the model and improves early drift 

detection [10,11]. 

Conclusion: PPP as the Ultimate Market Cycle 

Indicator 

This work presented a hybrid concept drift detection pipeline that 

utilizes a CatBoost classifier and combines drift-aware, drift-

describing metrics, PSI, JSD, reconstruction errors and uncertainty 

found in softmax margins. The preprocessing pipeline fixed logical 

inconsistencies while standardizing its features and engineered 

informative features, such as price per mile and wartime rate. SMOTE 

and scaling were applied to ensure balanced and normalized input for 

robust classification. The CatBoost model was tested with 90.6% 

precision, while multiclass macro averaged precision, recall and F1 

metrics informed an impression of consistent multiclass modeling 

performance. SHAP analysis found that model interpretability was 

feasible and further Fusion- Encoding Trust scores derived using 

multiple signal fusion clearly conveyed batch-wise degradation along 

with early warnings. Visual methods, confusion matrices, correlation 

heat maps added further insight into reliability indicators over time. 

This frame- work could also apply to streaming environments using 

incremental learners or online enhancement. Future work that 

includes reinforcement learning could be applied to the trust score so 

that the weights are tuned adaptively. Furthermore, if this approach is 

integrated with a real-time monitoring system and rule-based 

anomaly framework, it could be deployed as a trust monitoring 

product in critical infrastructure systems such as air traffic and 

healthcare. 
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