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Abstract 

This study investigates the solution of a boundary value problem using two numerical methods: The Rayleigh-Ritz method and the Finite 

Element Method (FEM). The aim is to compare the performance of these methods and assess the reliability of FEM as a generalization of the 

Rayleigh-Ritz approach for more complex problems. The Rayleigh-Ritz method and the linear element formulation of the finite element method 

were employed to solve the boundary value problem. A detailed comparison of the results obtained from both methods was performed. 

Graphical illustrations were used to present the solutions, and potential sources of error were analyzed, including element and domain 

approximation errors, round-off errors, and the impact of using linear rather than quadratic elements in FEM. The solutions generated by both 

methods were found to be in close agreement, demonstrating that FEM is a viable alternative to the Rayleigh-Ritz method for solving boundary 

value problems. The minor discrepancies observed can be attributed to approximation errors and the choice of linear elements in the finite 

element analysis. This work highlights the applicability and effectiveness of both the Rayleigh-Ritz method and FEM in solving boundary 

value problems. It underscores the finite element method’s flexibility, especially in handling more complex boundary conditions and 

geometries, and contributes to the understanding of the factors influencing the accuracy of numerical methods in structural analysis. 

Keywords: Partial differential equations, Boundary value problem, Rayleigh-Ritz method, Finite Element Method (FEM), Numerical analysis

 

Introduction 

Mathematical models are essential in science and engineering for 

approximating and solving real world problems. These models, which 

include linear, algebraic, and differential equations, help simulate and 

understand complex systems based on practical observations. In 

structural mechanics, they are crucial for predicting material stress, 

strain, and deformation in design and manufacturing. Numerical 

methods like the Finite Element Method (FEM) have become 

indispensable for solving such models, particularly for problems 

involving complex domains, varying material properties, or nonlinear 

behaviors that make analytical solutions challenging [1]. 

The FEM provides approximate solutions by discretizing a 

system into smaller, manageable parts called finite elements. This 

subdivision allows for accurate representation of complex geometries 

and is computationally efficient. However, while FEM is widely 

applied, its comparative performance as a generalization of other 

methods, such as the Rayleigh-Ritz method, particularlyin terms of 

approximation accuracy and computational efficiency, is a topic of 

continued research. 

 

 

 

Research objectives 

This study aims to address the following questions: 

• How do the Rayleigh-Ritz and finite element methods 

compare in solving boundary value problems? 

• What are the sources of error in each method, and how do 

they affect the accuracy of the solutions? 

• To what extent can the use of linear elements in FEM impact 

the overall performance in comparison to the Rayleigh-Ritz 

method? 

Scope and methodology 

The study will involve solving a boundary value problem using 

both the Rayleigh-Ritz method and the linear element approach of the 

finite element method. The accuracy of the approximations will be 

compared through graphical illustrations and numerical analysis. 

Sources of error, including element approximation and domain 

discretization, will be identified and evaluated. While FEM will be 

explored using linear elements, more advanced elements such as 

quadratic or cubic will not be considered in this analysis. 

Additionally, the study will focus solely on static, linear problems and 
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will not account for dynamic or nonlinear behavior, which could be 

addressed in future research. 

Paper structure 

The remainder of this paper is structured as follows: Section 2 

reviews the methodology of the research using the finite element 

method and variational principles. Section 3 outlines the 

mathematical formulation of both methods for the boundary value 

problem under consideration. Section 4 presents the comparative 

analysis of the results, including error estimation and graphical 

illustrations. Section 5 discusses the findings, and Section 6 

concludes the study with suggestions for further research and 

practical implications. 

Method 

Weighted integrals 

In almost all approximate methods used to determine the solution 

of differential and integral equations, we seek a solution in the form. 

𝜇(𝑥) ≈ 𝑈𝑁 (𝑥) = ∑𝐶𝑗∅𝑗(𝑥)

𝑁

𝑗=1

 

Where 𝑢 represents the solution of a differential equation and 

associated boundary conditions, and 𝑈𝑁 is its approximation that is 

represented as a linear combination of unknown parameters 𝐶𝐽 and 

known functions ∅𝑗 of position 𝑥 in the domain Ω on which the 

problem is posed. We shall shortly discuss the conditions on ∅𝐽. The 

approximate solution 𝑈𝑁 is completely known only when 𝐶𝐽 are 

known. Thus, we must find a means to determine 𝐶𝐽 such that 𝑈𝑁 

satisfies the differential equation at every point 𝑥 of the domain Ω and 

conditions on the boundary Γ of Ω, then 𝑈𝑁 (𝑥) = 𝑢(𝑥), which is the 

exact solution of the problem. Of course, approximate methods are 

not about problems for which exact solutions can be determined by 

some methods of mathematical analysis: the role of approximate 

methods is to find an approximate solution of problems that prove 

difficult to obtain analytically [2]. 

When the exact solution cannot be determined, the alternative is 

to find a solution 𝑈𝑁 that satisfies the governing equations in an 

alternative way. In the process of satisfying the governing equations 

approximately, we obtain (not accidentally but by planning) 𝑁 

algebraic relations among the 𝑁 parameters c1, c2, . . . , cN. For 

example, consider the problem of solving the differential equation. 

−
𝑑

𝑑𝑥
 [𝑎(𝑥)

𝑑𝑢

𝑑𝑥
] = 𝑓(𝑥) for 0 < 𝑥 < 𝐿                                   (1) 

subjected to the boundary conditions 

𝑢(0) = 𝑢0, [𝑎(𝑥)
𝑑𝑢

𝑑𝑥
]
𝑥=1

= 𝑄0    

Where a(x), c(x), and f (x) are known functions, 𝑢0 and 𝑄0 are 

known parameters, and u(x) is the function to be determined. We now 

seek an approximate solution over the entire domain Ω = (0, L) by 

substituting UN into equation 1 such that 

−
𝑑

𝑑𝑥
[𝑎(𝑥)

𝑑𝑈𝑁

𝑑𝑥
] − 𝑓(𝑥) ≡ 0                                                  (2) 

We shall consider how to solve such equations later. The equation 

requires the approximate solution UN to satisfy the differential 

equation in the weighted-integral sense, 

∫ 𝑤(𝑥)𝑅𝑑𝑥 = 0
1

0
                                                                 (3) 

where R is called the residual defined as 𝑅 ≡ −
𝑑

𝑑𝑥
[𝑎(𝑥)

𝑑𝑈𝑁

𝑑𝑥
] −

𝑓(𝑥) 𝑎𝑛𝑑 𝑤(𝑥) and w(x) is called a weight function. 

Development of weak forms 

There are three steps in the development of the weak form of any 

differential equation. 

Step 1: This step is the same as in a weighted-residual method. 

Move all terms of the differential equation to one side (so that it reads 

. . .= 0), multiply the entire equation with a function w(x), and 

integrate over the domain Ω = (0, L) of the problem 

0 = ∫ 𝑤
𝐿

0
[−

𝑑

𝑑𝑥
(𝑎

𝑑𝑢

𝑑𝑥
) − 𝑓] 𝑑𝑥                                            (4) 

 Recall that the expression in the square brackets is not identically 

zero since 𝑢 is replaced by its approximation, UN. Mathematically, in 

equation 2, the error in the differential equation (due to the 

approximation of the solution) is made zero in the weighted integral 

sense. 

Step 2: While the weighted integral statement, equation 2, allows 

us to obtain the necessary number (N) of algebraic relations among 𝑐𝑗  

for N different choices of the weight function w, it requires that the 

approximation functions ∅𝑗 be such that UN is differentiable as many 

times as needed in the original differential equation and satisfies the 

specified boundary conditions. So, it makes sense to shift half of the 

derivatives from u to w so that both are differentiated equally, and we 

have weaker continuity requirements on ∅𝑗. The resulting integral 

form is known as the weak form. 

Step 3: The third and last step of the weak formulation is to 

impose the actual boundary conditions of the problem under 

consideration. It is here that we require the weight function w to 

vanish at boundary points where the essential boundary conditions are 

specified, i.e., w is required to satisfy the homogeneous form of the 

specified essential boundary conditions of the problem [1]. 

Linear and bilinear functional 

Linear and bilinear functional are fundamental concepts in 

functional analysis and variational methods, including the Rayleigh-

Ritz method, which is used to approximate solutions to Boundary 

Value Problems (BVPs). These functional play a key role in 

formulating and solving the variational form of the governing 

differential equations. A linear functional L maps a function u from a 

vector space into real numbers ℝ, such that [3]: 

𝐿(𝑐1𝑢1 + 𝑐2𝑢2) = 𝑐1𝐿(𝑢1) + 𝑐2𝐿(𝑢2) 

for any scalars 𝑐1 , 𝑐2 and functions 𝑢1, 𝑢2. In the Rayleigh-Ritz 

method, linear functional are typically associated with external 

forces, boundary conditions, or source terms in the governing 

equations. A bilinear functional, B(u, v), maps two functions u and v 

from a vector space into real numbers ℝ, and it is linear in each 

argument: 
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𝐵(𝑐1𝑢1 + 𝑐2𝑢2, 𝑣) = 𝑐1𝐵(𝑢1, 𝑣) +  𝑐2𝐵(𝑢2, 𝑣) 

for any scalars 𝑐1 , 𝑐2 and functions 𝑢1, 𝑢2, and v. In boundary 

value problems, bilinear functional often represent the energy terms 

in the system, such as the potential energy in elasticity or other 

physical quantities. The Rayleigh-Ritz method is based on variational 

principles, where the objective is to minimize a functional (often 

representing the total energy of the system) to find an approximate 

solution to a BVP. This is done by approximating the solution as a 

linear combination of trial functions and applying the variational 

principle. In the variational formulation of a boundary value problem, 

the solution satisfies a weak form of the governing differential 

equations. This weak form is expressed using bilinear and linear 

functional as shown below: 

∏(𝑢) = 𝐵(𝑢, 𝑣) − 𝐿(𝑢) 

Where ∏(𝑢) is the second-order differential equation for the 

system, B(u,v) is the bilinear functional representing the system’s 

internal energy, and L(u) is the linear functional representing external 

forces. In the Rayleigh-Ritz method, the trial solution u(x) is 

expressed as a linear combination of known basis functions ∅𝑖(𝑥): 

𝑢(𝑥) = ∑𝑐𝑖∅𝑖(𝑥)

𝑛

𝑖=1

 

where 𝑐𝑖  are unknown coefficients to be determined. Substituting 

this into the variational form leads to a system of algebraic equations 

for 𝑐𝑖 , which are obtained by minimizing the functional: 

𝜕Π(𝑢)

𝜕𝑐𝑖
= 0. 

These functional transform the original problem into an 

optimization problem, where the weak form is minimized to 

approximate the solution. 

A brief look at the finite element method 

The Finite Element Method (FEM) is a numerical technique for 

solving problems which are described by partial differential 

equations. The finite element method is a technique in which a given 

domain is represented as a collection of simple domains, called finite 

elements, so that it is possible to systematically construct the 

approximation functions needed in a variational or weighted-residual 

approximation of the solution of a problem over each element [4]. 

Thus, the finite element method differs from the traditional Ritz, 

Galerkin, least-squares, collocation and other weighted residual 

methods in the manner in which the approximation functions are 

constructed. But this difference is responsible for the following three 

basic features of the finite element method: 

1. Division of whole domain into sub-domains that enable a 

systematic derivation of the approximation functions as 

well as representation of complex domains. 

2. Derivation of approximation functions over each element. 

3. Assembly of elements is based on the continuity of the 

solution and balance of internal fluxes; the assemblage of 

elements results in a numerical analog of the mathematical 

model of the problem being analyzed [2]. 

Discretization of the domain: In the finite element method, the 

domain Ω of the problem is divided into a set of subintervals i.e., line 

elements, called finite elements. A typical element is denoted Ωe and 

it is located between points A and B with coordinates 𝑥𝑎 and 𝑥𝑏 (i.e, 

of length 𝑥𝑏 − 𝑥𝑎). The reason for dividing a domain into a set of sub-

domains is twofold. First, domains of most systems by design are a 

composite of geometrically materially different parts, and the solution 

on these sub-domains is represented by different functions that are 

continuous at the interfaces of these sub-domains. Therefore, it is 

appropriate to seek approximation of the solution over each sub-

domain. Second, approximation of the solution over each element is 

simpler than its approximation over the entire domain. However, the 

number of elements into which the total domain is divided in a 

problem depends mainly on the geometry of the domain and on the 

desired accuracy of the solution [5]. 

Derivation of element equations: In the finite element method, 

we seek an approximate solution to equation 1 over each finite 

element. The polynomial approximation of the solution within a 

typical finite element 𝑄𝑒 is assumed to be of the form 

𝑢ℎ
𝑒 = ∑ 𝑢𝑗

𝑒𝜑𝑗
𝑒(𝑥)𝑛

𝑗=1                                                            (5) 

where 𝑢ℎ
𝑒  are the values of the solution 𝑢(𝑥) at the nodes of the 

finite element 𝑄𝑒 and are the approximation functions over the 

element. Next, we develop the algebraic equations among the 

unknown parameters, like the Ritz and Galerkin method. The main 

difference here is that we work with a finite element (i.e., sub-

domain) as opposed to the total domain. This step results in a matrix 

equation of the form {𝐾𝑒} {𝐶𝑒} = {𝐹𝑒}, which is called the finite 

element model of the original equation [1]. The derivation of finite 

element equations involves the following three steps: 

1. Construct the weighted-residual or weak form of the 

differential equation. 

2. Obtain an approximate solution over a typical finite 

element. 

3. Derive the finite element equations by substituting the 

approximate solution into the weighted- residual or 

weak form. 

To obtain the weak form, we multiply the governing differential 

equation 1 with a weight function w and integrate over a typical 

element which results into 

 0 = ∫ (𝑎
𝑑𝑢

𝑑𝑥

𝑥𝑏 

𝑥𝑎

𝑑𝑤

𝑑𝑥
+ 𝑐𝑤𝑈 − 𝑤𝑓) 𝑑𝑥 − [𝑤𝑎

𝑑𝑢

𝑑𝑥
]
𝑥𝑏

𝑥𝑎
              (6) 

The last step is to identify the primary and secondary variables of 

the weak form. This requires us to classify the boundary conditions 

of each differential equation into essential (or geometric) and natural 

(or force) boundary conditions. The classification is made uniquely 

by examining the boundary term appearing in the weak form 

(equation 6), 

[𝑤𝑎
𝑑𝑢

𝑑𝑥
]
𝑥𝑎

𝑥𝑏

 

The coefficient of the weight function w in the boundary 

expression is called a secondary variable. The dependent unknown u 

in the same form as the weight function w appearing in the boundary 

expression is termed a primary variable. For the model at hand, the 

primary variable is u while the secondary variable is 𝑎
𝑑𝑢

𝑑𝑥
. For a 

typical lone element, we have four boundary conditions 



 Innovative Journal of Applied Science  

  
4 

Copyright © 2024 | ijas.meteorpub.com 
Volume 1, Issue 1 (Nov-Dec) 2024 

𝑢ℎ
𝑒(𝑥𝑎) = 𝑢1

𝑒                                                              (7) 

(−𝑎
𝑑𝑢

𝑑𝑥
)𝑥=𝑥𝑎

= 𝑄1
𝑒                                                           (8) 

𝑢ℎ
𝑒(𝑥𝑏) = 𝑢2

𝑒                                                                       (9) 

(𝑎
𝑑𝑢

𝑑𝑥
)𝑥=𝑥𝑏

= 𝑄2
𝑒                                                              (10) 

where 𝑄1
𝑒 and 𝑄2

𝑒 mimic the compressive force and tensile force 

for the axial deformation of a bar respectively. If we select 𝑢ℎ
𝑒(𝑥) such 

that it automatically satisfies the end conditions 𝑢ℎ
𝑒(𝑥𝑎) = 𝑢1

𝑒  and 

𝑢ℎ
𝑒(𝑥𝑏) = 𝑢2

𝑒, then it remains that we include the remaining 

conditions: 

𝑄1
𝑒 = (−𝑎

𝑑𝑢

𝑑𝑥
)𝑥=𝑥𝑎

, 𝑄2
𝑒 = (𝑎

𝑑𝑢

𝑑𝑥
)𝑥=𝑥𝑏

                              (11) 

in the weak form. Using equation 11, the weak form becomes 

0 = ∫ (𝑎
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓) 𝑑𝑥 − 𝑤(𝑥𝑎)

𝑥𝑏

𝑥𝑎
 𝑄1 − 𝑤(𝑥𝑏)𝑄2    (12) 

 The finite element model based on the weak form in equation 12 

is called the weak form Galerkin finite element model [6]. 

Assemblage of element: The final aspect of finite element 

analysis is to assemble all the finite elements. In deriving the element 

equations, we isolated a typical element (the eth element) from the 

mesh and formulated the variational problem (or weak form) and 

developed its finite element model. To obtain the finite element 

equations of the total problem, we must put the elements back into 

their original positions. In putting the elements with their nodal 

degrees of freedom back into their original positions, we must require 

that the solution u(x) is uniquely defined (i.e., u is continuous) and 

their source terms 𝑄𝑖
𝑒 are balanced at the points where elements are 

connected to each other. Please note, if the variable u is not 

continuous, we do not impose its continuity; but in the problem 

studied the primary variable is assumed to be continuous (r5). The 

assembly of elements is carried out by imposing the following two 

conditions: 

1. If the node i of element Ω𝑒 is connected to the node j of 

element Ω𝑓 and node k of element Ω𝑔, the continuity of the 

primary variable u requires 

𝑢𝑖
𝑒 = 𝑢𝑖

𝑓
= 𝑢𝑘

𝑔
                                                          (13) 

2. For the same three elements, the balance of secondary 

variables at connecting nodes requires 

𝑄𝑖
𝑒 + 𝑄𝑖

𝑓
+ 𝑄𝑘

𝑔
= 𝑄1                                                (14) 

where I is the global node number assigned to the nodal point that 

is common to the three elements and 𝑄𝐼 is the value of externally 

applied source, if any (otherwise zero). 

Main Section 

In this study, we shall consider a boundary value problem as given 

in the equation below: 

−
𝑑

𝑑𝑥
(𝐸𝐴(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑐(𝑥)𝑢 = 𝑓(𝑥), for 0 < 𝑥 < 𝐿           (15) 

with boundary conditions, 

        (16) 

where P > 0, E, A(x), c(x) and f(x) are given data where E = 

Young’s Modulus, A = Cross sectional area. 

Variational method for solving boundary value problems 

(Ritz method) 

To approach this problem, we choose the approximate solution in 

the form. 

𝑈2 = 𝑐1∅1 + 𝑐2∅2 + ∅0                                                       (17) 

with ∅0 = 1,∅1(𝑥) = 𝑥2 − 2𝑥, ∅2(𝑥) = 𝑥3 − 3𝑥. Then, we 

construct the weak form by moving all the terms to only one side of 

the differential equation such that we have (…= 0). 

0 = −
𝑑

𝑑𝑥
(𝐸𝐴(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑐(𝑥)𝑢 − 𝑓(𝑥), for 0 < 𝑥 < 𝐿        (18) 

Then, multiply equation 21 by a weight function w(x) and 

integrate over the domain Ω = (0, L). Doing this, we have 

              (19) 

 (20) 

    (21) 

Integrating the term 

∫ 𝑤
𝐿

0

[−
𝑑

𝑑𝑥
(𝐸𝐴(𝑥)

𝑑𝑢

𝑑𝑥
)] 𝑑𝑥 

by parts, we have 

∫ 𝑤
𝐿

0
[−

𝑑

𝑑𝑥
(𝐸𝐴(𝑥)

𝑑𝑢

𝑑𝑥
)] 𝑑𝑥 = ∫ 𝐸𝐴

𝐿

0

𝑑𝑢

𝑑𝑥
(
𝑑𝑤

𝑑𝑥
) 𝑑𝑥 − [𝑤𝐸𝐴

𝑑𝑢

𝑑𝑥
]
0

𝐿
     (22) 

Substituting equation 22 into equation 21 then, 

0 = ∫ [𝐸𝐴
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
+ 𝑤𝑐𝑢 − 𝑤𝑓]

0

𝐿

𝑑𝑥 − [𝑤𝐸𝐴
𝑑𝑢

𝑑𝑥
]
𝐿

0
                 (23) 

Applying our boundary conditions, 

0 = ∫ [𝐸𝐴
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
+ 𝑤𝑐𝑢]

𝐿

0
𝑑𝑥 − ∫ 𝑤𝑓𝑑𝑥 − [𝑤𝐸𝐴

𝑑𝑢

𝑑𝑥
]
𝐿

0𝐿

0
          (24) 

Equation 24 is called the weak form of the equation. The word 

weak refers to the weakened continuity of u, which is required to be 

twice differentiable in the weighted integral statement equation 21 but 

only once differentiable in equation 24. 

The variational problem and quadratic functional can be 

expressed in the form: 

𝐵(𝑤, 𝑢) = 𝐼(𝑤)                                                                      (25) 

where 

𝐵(𝑤, 𝑢) = ∫ (𝐸𝐴
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑈) 𝑑𝑥

𝐿

0
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𝑙(𝑤) = −∫ 𝑤𝑓𝑑𝑥 + (𝑤(𝐿) + 𝑤(0))𝑃
𝐿

0

 

By minimizing the quadratic functional using the relation 

𝐼(𝑢) =
1

2
𝐵(𝑢, 𝑢) − 𝑙(𝑢) 

and solving, we have 

        (26) 

Setting EA = 1, c = −1, f = −x2, L = 1, P = 0. let U (1) = 0 and 

substituting u ≈ UN into equation 26, we have 

   (27) 

Differentiating with respect to the ci ’s, we have 

       (28) 

= ∑ 𝐾𝑖𝑗𝐶𝑗 − 𝑓𝑖
𝑁
𝑗=1                                                                     (29) 

Also, ∅𝑖 = 𝑥𝑖(1 − 𝑥) satisfies boundary conditions of the 

differential equation. 

For the choice of the approximation functions in equation 29, the 

matrix coefficients 𝐾𝑖𝑗 = 𝐵(∅𝑖∅𝑗) and vector coefficients 𝐹𝑖 = 𝑙(∅𝑖) 

can be computed as follows: 

𝐾𝑖𝑗 = ∫ ([𝑖𝑥𝑖−1 − (𝑖 + 1)𝑥𝑖] [𝑗𝑥𝑗−1 − (𝑗 + 1)𝑥𝑗] − (𝑥𝑖 −
1

0

𝑥𝑖+1) (𝑥𝑗 − 𝑥𝑗−1)) 𝑑𝑥                                                             (30) 

=
2𝑖𝑗

(𝑖+𝑗)(𝑖+𝑗)2−1
−

2

(𝑖+𝑗+1)(𝑖+𝑗+2)(𝑖+𝑗+3)
                                (31) 

𝐹𝑖 = −∫ 𝑥2(𝑥𝑖 − 𝑥𝑖+1)𝑑𝑥
1

0
                                               (32) 

= −
1

(𝑖+3)(𝑖+4)
,                                                                     (33) 

for i, j = 1, 2, . . . , N. We shall consider the one, two parameter 

approximations. 

For N = 1, we have 𝐾11 =
3

10
, 𝐹1 = −

1

20
 and 𝑐1 = −

1

6
. 

The one-parameter Rayleigh-Ritz solution us given by 

𝑈1 = 𝑐1∅1 = −
1

6
(𝑥 − 𝑥2) 

For N = 2, we have 

[
0.3
0.15

 
0.15
0.124

] [
𝑐1
𝑐2

] = [
−0.05

−0.03333
] 

Solving the linear equation using Crammer’s rule, we obtain 𝑐1 =
−0.08197, 𝑐2 = −0.16939, The two parameter Ritz solution is 

given by: 

𝑈2 = 𝑐1∅1 + 𝑐2∅2 = −0.08197(𝑥 − 𝑥2) − 0.16939 (𝑥2 − 𝑥3)           (34) 

= −0.08197𝑥 − 0.08742𝑥2 + 0.16939𝑥3                         (35) 

Using the finite element analysis 

We recall the problem 

−
𝑑

𝑑𝑥
(𝐸𝐴(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑐(𝑥)𝑢 = 𝑓(𝑥) for 0 < 𝑥 < 𝐿                (36) 

with boundary conditions, 

[𝐸𝐴(𝑥)
𝑑

𝑑𝑥
]
𝑥=0

= −𝑃 𝑎𝑛𝑑 [𝐸𝐴(𝑥)
𝑑𝑢

𝑑𝑥
]
𝑥=𝐿

= 𝑃                    (37) 

Following our previous assumption, we set 𝐸𝐴 = 1, 𝑐 = −1, 𝑓 =
−𝑥2, 𝐿 = 1, 𝑃 = 0. The coefficient matrix over a finite element is 

given as 

𝐾𝑖𝑗
𝑒 = [∫

𝑑𝜑𝑖
𝑒

𝑑𝑥⃗⃗⃗⃗  ⃗

𝑥𝑏

𝑥𝑎

𝑑𝜑𝑖
𝑒

𝑑𝑥⃗⃗⃗⃗  ⃗
) − 𝜑𝑖

𝑒𝜑𝑗
𝑒]                                              (40) 

𝑓𝑖
𝑒 = ∫ (−𝑥2𝜑𝑖

𝑒)
𝑥𝑏

𝑥𝑎
𝑑𝑥                                                          (41) 

Since the weak form over an element is equivalent to the 

differential equation and the natural boundary conditions, the 

approximate solution 𝑢ℎ
𝑒  (equation 5) is required to satisfy only the 

end conditions 𝑢ℎ
𝑒(𝑥𝑎) = 𝑢1

𝑒𝑎𝑛𝑑 𝑢ℎ
𝑒(𝑥𝑏) = 𝑢2

𝑒. We seek the 

approximate solution in the form of algebraic polynomials. For the 

weak form in equation 37, the minimum polynomial of 𝑢ℎ
𝑒  is linear 

(which is what we are going to employ to solve this problem). 

𝑢ℎ
𝑒(𝑥) = 𝑐1

𝑒 + 𝑐2
𝑒(𝑥)                                                          (42) 

where 𝑐1
𝑒  and 𝑐2

𝑒 are constants. Dividing into subdivisions with 

end points 𝑥𝑎 and 𝑥𝑏, we have 

𝑢ℎ
𝑒(𝑥𝑎) = 𝑐1

𝑒 + 𝑐2
𝑒(𝑥𝑎)                                                      (43) 

𝑢ℎ
𝑒(𝑥𝑏) = 𝑐1

𝑒 + 𝑐2
𝑒(𝑥𝑏)                                                       (44) 

Solving both equations simultaneously, we have 

𝑐1
𝑒 =

𝑢1
𝑒𝑥𝑏−𝑢2

𝑒𝑥𝑎

𝑥𝑏−𝑥𝑎
                                                                   (45) 

𝑐1
𝑒 =

𝑢2
𝑒−𝑢1

𝑒

𝑥𝑏−𝑥𝑎
                                                                          (46) 

Substituting 𝑐1
𝑒  and 𝑐1

𝑒  in equations 45 and 46 into equation 42, 

we have 

𝑢ℎ
𝑒(𝑥) = 𝑢1

𝑒 (
𝑥𝑏−𝑥

𝑥𝑏−𝑥𝑎
) + 𝑢2

𝑒 (
𝑥−𝑥𝑎

𝑥𝑏−𝑥𝑎
)                                    (47) 

Comparing equation 47 with equation 5, we have 

𝜑1
𝑒(𝑥) =

𝑥𝑏−𝑥

𝑥𝑏−𝑥𝑎
, 𝜑2

𝑒(𝑥) =
𝑥−𝑥𝑎

𝑥𝑏−𝑥𝑎
                                       (48) 

We can then compute equation 38 and equation 39 by evaluating 

the integrals. We have 

𝐾11
𝑒 =

1

ℎ𝑒
−

1

3
ℎ𝑒 

𝐾12
𝑒 = −

1

ℎ𝑒
−

1

6
ℎ𝑒 = 𝐾21

𝑒  
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𝐾22
𝑒 = −

7

3ℎ𝑒
−

1

3
ℎ𝑒 

And so on. 

The coefficient or stiffness matrix is given as 

[𝐾𝑒] =
𝑎𝑒

ℎ𝑒
[

1 −1
−1 1

] +
𝑐𝑒ℎ𝑒

6
[
2 1
1 2

] 

The coefficient matrix of the two linear finite elements with 𝑎𝑒 =

1, 𝑐𝑒 = −1, ℎ𝑒 =
1

2
 is 

[𝐾𝑒] =
1

12
[
22 −25

−25 22
] 

The co-efficients 𝑓𝑖
𝑒  are evaluated as 

𝑓𝑖
𝑒 = −

1

ℎ𝑒
[
𝑥𝑏

3
(𝑥𝑏

3 − 𝑥𝑎
3) −

1

4
(𝑥𝑏

4 − 𝑥𝑎
4)] 

𝑓2
𝑒 = −

1

ℎ𝑒
[
1

4
(𝑥𝑏

4 − 𝑥𝑎
4) −

𝑥𝑎

3
(𝑥𝑏

3 − 𝑥𝑎
3)] 

Element 1 (ℎ1 =
1

2
, 𝑥𝑎 = 0, 𝑥𝑏 =

1

2
) 

𝑓1
1 = −0104167, 𝑓2

1 = −0.03125.  

Element 2 (ℎ2 =
1

2
, 𝑥𝑎 = 0, 𝑥𝑏 = 1) 

𝑓1
2 = −0.11458333, 𝑓2

2 = −0.177083333.  

The assembled equation is given as 

[

𝐾11
1 𝐾12

1 0

𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2

0 𝐾21
2 𝐾22

2

] [

𝑢1
𝑒

𝑢2
𝑒

𝑢3
𝑒
] = [

𝑓1
1 + 𝑄1

1

(𝑓2
1 + 𝑓1

2) + (𝑄2
1 + 𝑄1

2)

𝑓2
2 + 𝑄2

2

] 

where 𝑄𝑖
𝑒 denote force at the nodes with 𝑄1

1 = 0, 𝑄2
2 = 0 

Therefore, the assembled equation becomes 

[

𝐾11
1 𝐾12

1 0

𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2

0 𝐾21
2 𝐾22

2

] [

𝑢1
𝑒

𝑢2
𝑒

𝑢3
𝑒
] = [

𝑓1
1

𝑓2
1 + 𝑓1

2

𝑓2
2

] 

 

[
1.8333 −2.0833 0

−2.0833 2.1666 −2.0833
0 −2.0833 1.8333

] [

𝑈1

𝑈2

𝑈3

] = [
−0.0104167
−0.145833
−0.1770833

] 

 

According to the boundary condition, U1 = 0.0 and U3 = 0.0. 

Therefore, solving for U2, we have the solution: U1 = 0.0, U2 = 

−0.06731, U3=0.0. 

Results 

The results indicate that the three Approaches-Ritz solutions 

using one and two parameters, as well as the finite element method 

with two subdivisions-exhibited similar convergence behavior. The 

solutions are relatively close to one another, and the observed 

variations can be attributed to the simplifications and assumptions 

made during the modeling process. In the case of the Ritz method, 

increasing the number of parameters used in the calculations leads to 

enhanced accuracy of the results. This is because a higher number of 

parameters captures the underlying complexities of the boundary 

value problem more effectively [1]. Similarly, for the Finite Element 

Method (FEM), employing higher-order polynomials within the 

elements can significantly improve the accuracy of the solutions. 

Higher-order polynomials provide a more flexible framework for 

representing the solution over each element which enables better 

approximation of complex behaviors. Overall, while both methods 

demonstrate effective convergence, the choice of parameters and 

polynomial order plays a crucial role in determining the precision of 

the final solutions. Future analyses could explore the impact of 

varying these parameters further, potentially leading to even more 

accurate and reliable results in solving boundary value problems 

(Table 1) (Figure 1 and Figure 2). 

 Ritz solution  FEM 

x N = 1 N = 2 Linear element 

0.0 0.00 0.00 0.00 

0.1 -0.00150 -0.0089 -0.0135 

0.2 -0.0267 -0.0185 -0.0269 

0.3 -0.0350 -0.0279 -0.0404 

0.4 -0.0400 -0.0359 -0.0538 

0.5 -0.0417 -0.0417 -0.0673 

0.6 -0.0400 -0.0441 -0.0538 

0.7 -0.0350 -0.0421 -0.0404 

0.8 -0.0267 -0.0348 -0.0269 

0.9 -0.0150 -0.0211 -0.0135 

1.0 0.00 0.00 0.0 

Table 1: Comparison between the solutions of Rayleigh-Ritz and 

finite element methods. 

 

Figure 1: The graphical representation of Rayleigh-Ritz 

solution. 
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Figure 2: Graph of the finite element method in two subdivisions. 

Discussion 

A systematic study of the steps involved in the finite element 

formulation of a model second-order differential equation in a single 

variable was presented. The study introduces the basic principles of 

the finite element method and applied them to unidimensional 

problems. Taking a close look at Table 4.1, we discover that the 

values obtained using the finite element method are reasonably close 

to those obtained using the Ritz method. This shows that the finite 

element method is equivalent to the use of the Rayleigh-Ritz method 

with a piecewise polynomial approximation to the displacement. The 

approximation is defined through a finite set of nodal values that 

constitute the degrees of freedom of the problem. 

Conclusion 

In using the finite element method, the use of quadratic element 

is highly recommended for higher studies compared to the use of 

linear element for a better and more accurate solution. Also, in this 

research work, the domain was divided into two subdivisions to avoid 

too much computation. It is recommended that the domain be split 

into as many subdivisions as possible. 
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