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Abstract 

Reliable deployment of Large Language Models (LLMs) in question-answering tasks requires well-calibrated confidence estimates. This 

work investigates whether token-level log-likelihoods—sums of log-probabilities over answer tokens—can serve as effective confidence 

signals in Multiple-Choice Question Answering (MCQA). We compare three methods: (1) Raw log-likelihood, (2) length-normalized log- 

likelihood and (3) conventional softmax-based choice probability. Across four diverse MCQA benchmarks, we find that no single scoring 

method is universally best. Length normalization can significantly improve calibration but may reduce accuracy, while softmax and raw log-

likelihood yield identical predictions. These results highlight important trade-offs between calibration and accuracy and offer insights into 

selecting or adapting confidence measures for different tasks. Our findings inform the design of more trustworthy LLM-based QA systems and 

lay groundwork for broader uncertainty quantification efforts. 
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Introduction

Large Language Models (LLMs) exhibit impressive performance 

in knowledge and reasoning tasks, but assessing the model’s 

confidence in its answers remains challenging. An ideal LLM would 

not only provide an answer but also a well-calibrated probability of 

correctness—enabling users to trust or verify the outputs. However, 

existing LLMs are often poorly calibrated and sometimes express 

high confidence in incorrect answers and low confidence in correct 

ones. This miscalibration poses risks in high-stakes applications 

where decision-making relies on model confidence [1]. 

Multiple-Choice Question Answering (MCQA) is a setting where 

LLMs must choose the correct answer from a fixed set of options. 

MCQA provides a natural way to extract confidence scores: One can 

compute the probability the model assigns to each option. Typically, 

this is done by converting the model’s token-level probabilities into a 

normalized softmax score over choices, which serves as the model’s 

confidence in its selected answer. Yet, using model probabilities for 

scoring often requires task-specific heuristics like answer length 

normalization or other calibrations. This is because the raw log-

likelihood of a sequence is biased by its length — longer answer 

options tend to have lower total probability (product of token 

probabilities), even if they might be the correct answer. As a result, 

practitioners frequently normalize log-likelihoods by the number of 

tokens to mitigate length bias [2]. 

In this work, we investigate how the choice of confidence scoring 

method affects the performance and calibration of LLMs on MCQA. 

In particular, we evaluate using the raw log-likelihood of the model’s 

predicted answer as a confidence signal, versus a length-normalized 

log-likelihood and compare these to the conventional softmax-based 

confidence. We focus on the question: Can token log-likelihood (with 

or without normalization) serve as a reliable confidence measure in 

place of the usual softmax probability and what are the trade-offs? 

We use the pre-trained Meta-Llama-3.1-8B large language model 

to score answer options. Specifically, we query the 8B-parameter 

LLaMA-3.1 model in a zero-shot setting via a completion API, 

extracting token log-probabilities. The model is treated as a black box 

scoring function that provides P (wt | context) for each next token. 

We ensured that the model’s prompt format was fixed across all 

methods; each answer is scored independently using the same prompt 

template to avoid any ordering bias. The model is used as-is without 

fine-tuning on the target datasets, so its calibration reflects that of the 

original pre-trained model. While Meta-Llama-3.1-8B may include 

some instruction tuning, we treat it as a standard language model 

without explicit alignment or additional calibration. 

Contributions 

• We provide a head-to-head comparison of raw log-

likelihood, normalized log- likelihood and softmax-based 

confidence as uncertainty measures for LLMs in MCQA. 

• We evaluate model calibration under each scoring method 

using Expected Calibration Error (ECE), revealing how 

each method may under- or overestimate true correctness 

likelihood [3]. 
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• We analyze the impact on accuracy, highlighting cases 

where length normalization changes the model’s predicted 

answer and affects overall performance. 

• We offer insights into when length normalization helps 

(e.g., reducing overconfidence on datasets with highly 

variable answer lengths) and when it hurts (e.g., when 

correct answers are generally shorter or when the model is 

already well- calibrated). 

The results show that while raw log-likelihood and softmax 

confidence yield identical predictions (and thus identical accuracy), 

length normalization can substantially alter model behavior. For 

instance, on the HellaSwag common-sense dataset, using normalized 

log-likelihood reduces the model’s overconfidence (ECE drops from 

37.0% to 4.4%) but also slightly lowers accuracy (from 28.9% to 

27.0%). In contrast, on an easier dataset (ARC-Easy), normalized 

scoring significantly hurts accuracy (dropping from 69.4% to 53.7%) 

and slightly worsens calibration. These findings suggest that log-

likelihood can serve as a viable confidence signal, but its effective use 

requires careful normalization or calibration strategies depending on 

the dataset. 

Related Work 

Confidence Calibration in Language Models. Calibration of 

neural network pre- dictions has long been studied in classification 

tasks [3]. Guo et al., showed modern neural networks are often 

overconfident and proposed metrics such as Expected Calibration 

Error (ECE) to quantify miscalibration [4]. For pre-trained language 

models, found that models like BERT are also mis- calibrated on NLP 

tasks and that calibration can degrade out-of-domain [5]. Recent work 

has extended calibration studies to large language models. 

Specifically examined whether language models “know when they 

don’t know” in question answering, exploring methods to make 

confidence scores correlate better with correctness via finetuning and 

post-hoc calibration [6]. Kadavath et al., showed that large language 

models (up to 52B parameters) have an internal notion of uncertainty: 

By probing or fine-tuning, one can get the model to predict when it 

will likely be wrong [7]. 

More recently proposed calibration tuning, an instruction-tuning 

approach to make LLMs output calibrated confidence estimates 

alongside answers, demonstrating improved ECE without sacrificing 

accuracy [8]. Our work differs in that we do not finetune the model, 

but instead analyze inherent confidence signals (log-likelihoods) 

from a pre-trained model. 

Multiple-Choice QA and Length Normalization. For LMs applied 

to multiple- choice tasks, a known challenge is that candidate answers 

may differ in length or surface form in ways unrelated to correctness. 

Prior evaluations (e.g., the EleutherAI LM Evaluation Harness) 

account for this by dividing each choice’s total log-probability by its 

token length [9]. Highlighted that using raw language model 

probabilities requires heuristics such as length normalization or bias 

correction. They proposed an unsupervised Answer-Level 

Calibration (ALC) method to remove context-independent biases 

(including those from answer length and frequency), which improved 

zero-shot answer selection on commonsense QA tasks [2]. Our study 

complements this line of work by quantifying the effects of the 

simplest normalization (dividing by length) on both accuracy and 

calibration. 

Another relevant line of research examines how instruction 

tuning (alignment) affects calibration. He et al., found that alignment 

(e.g., RLHF-trained models) can make LLMs more overconfident 

compared to their base models, due to conflating different uncertainty 

sources [10]. This emphasizes the importance of evaluating 

calibration for each model and use case. We focus on a single model’s 

behavior under different scoring methods, noting that our findings 

could vary for aligned vs. base LLMs. 

Overall, while many works propose methods to adjust model 

confidence (through tuning or external models), we concentrate on 

understanding the confidence signals already available from the 

model’s token probabilities. In particular, we shed light on a 

fundamental question for MCQA: Given an LLM, should one trust 

the raw log- likelihood or normalized probability as a measure of 

confidence? 

Methodology 

In a multiple-choice QA setting, a language model processes a 

prompt consisting of the question q and a candidate answer option a 

and computes the probability of the text of that answer. For each 

answer option ai (where i indexes the options), the model can assign 

a probability 𝑃(𝑎𝑖|𝑞) , typically factorized over tokens via the chain 

rule: 

𝑃(𝑎𝑖|𝑞) = ∏ 𝑃(𝑤𝑖,𝑓|𝑞, 𝑤𝑖,<𝑡)
𝑇𝑖
𝑡=1 ,  

where 𝑤𝑖 , 1, … , 𝑤𝑖 , 𝑇𝑖  are the tokens in answer ai and Ti is the 

length (number of tokens) of that answer. The model’s log-likelihood 

for ai is: 

𝐿𝐿𝑖 = log 𝑃(𝑎𝑖| 𝑞) = ∑ 𝑙𝑜𝑔 𝑃(𝑤𝑖,𝑡|𝑞, 𝑤𝑖,<𝑡)
𝑇𝑖
𝑡=1 .  

This LLi is the unnormalized log-probability of the entire answer 

sequence. Due to the sum over tokens, LLi tends to favor shorter ai 

(fewer multiplications of probabilities). 

A common approach to choose the most likely answer is to pick 

𝑖̂ = arg
𝑚𝑎𝑥

𝑖
𝐿𝐿𝑖 , 

the option with highest log-likelihood. However, LLi by itself is 

not a calibrated confidence measure; it is not bounded (often negative 

and unbounded above for probability 1). Moreover, it is not 

comparable across different questions because it depends on the 

length and complexity of the answer. 

The usual solution in MCQA is to derive a normalized probability 

by applying a softmax over the options. We can convert log-

likelihoods to a probability distribution over choices for the given 

question: 

𝑃𝑐ℎ𝑜𝑖𝑐𝑒(𝑎𝑖| 𝑞) =
exp (𝐿𝐿𝑖)

∑ exp (𝐿𝐿𝑗)𝑁
𝑗=1

, 

where N is the number of options. We refer to this as the softmax 

confidence for option i. The model’s predicted answer 𝑖 ̂will be the 

same arg max under Pchoice as under LLi, since softmax is monotonic. 

Thus, using softmax confidence does not change which answer is 

chosen, but does provide a probabilistic confidence score between 0 

and 1. 
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Alternatively, one can normalize the log-likelihood by length to 

mitigate the length bias. We define the normalized log-likelihood 

(NormLL) as: 

𝑁𝑜𝑟𝑚𝐿𝐿𝑖 =
1

𝑇𝑖
𝐿𝐿𝑖 =

1

𝑇𝑖

∑ 𝑙𝑜𝑔
𝑇𝑖
𝑡=1  𝑃(𝑤𝑖,𝑡|𝑞, 𝑤𝑖,<𝑡). 

This effectively computes the average log-probability per token 

for the answer. Using NormLL for scoring means selecting 

𝑖̂ = arg
𝑚𝑎𝑥

𝑖
𝑁𝑜𝑟𝑚𝐿𝐿𝑖, 

i.e., the answer that has the highest average token probability. 

Note that this can potentially select a different answer than raw LLi if 

a longer answer had higher average probability but lower total 

probability. 

We can also obtain a confidence score from NormLLi by 

exponentiating and nor-malizing: 

𝑃𝑛𝑜𝑟𝑚(𝑎𝑖|𝑞) =
exp (𝑁𝑜𝑟𝑚𝐿𝐿𝑖)

∑ exp (𝑁𝑜𝑟𝑚𝐿𝐿𝑗)𝑁
𝑗=1

. 

This yields a pseudo-probability distribution over choices based 

on length-normalized scores. Like softmax confidence, Pnorm lies in 

(0, 1) and sums to 1 over options (though it no longer corresponds to 

actual language-model probabilities without length normalization). 

In summary, we study three confidence scoring methods: 

1. LL (Log-Likelihood): Use LLi to choose the answer 

(equivalent to softmax choice) and interpret confidence as 

𝑃𝑐ℎ𝑜𝑖𝑐𝑒(𝑎𝑖̂ | 𝑞). In practice, this yields the same prediction as 

softmax. 

2. NormLL (Normalized Log-Likelihood): Use NormLLi to 

choose the answer and use 𝑃𝑛𝑜𝑟𝑚(𝑎𝑖̂|𝑞) as the confidence. 

3. Softmax (Choice Probability): The standard approach: use 

LLi for choice and 𝑃𝑐ℎ𝑜𝑖𝑐𝑒(𝑎𝑖̂ | 𝑞) for confidence. 

We evaluate each method in terms of: 

• Accuracy: The percentage of questions where the model’s 

chosen answer 𝑖 ̂is correct. 

• Calibration: How well the confidence estimates align with 

reality. We measure this via Expected Calibration Error 

(ECE) [3]. ECE partitions predictions into bins by 

confidence and computes the difference between mean 

confidence and accuracy in each bin, averaging these 

differences weighted by bin size. A perfectly calibrated 

model would have, for example, 70% accuracy among all 

predictions to which it assigned 70% confidence. We report 

ECE as a percentage (lower is better). 

Additionally, we use bootstrap resampling to estimate the 

uncertainty (confidence intervals) for accuracy and ECE on each 

dataset. This allows us to assess if differences between methods are 

statistically significant. 

Experimental Setup 

Model. We use the pre-trained Meta-Llama-3.1-8B large 

language model to score answer options. Specifically, we query the 

8B-parameter LLaMA-3.1 model in a zero-shot setting via a 

completion API, extracting token log-probabilities. The model is 

treated as a black box scoring function that provides P(wt | context) 

for each next token. We ensured that the model’s prompting format is 

fixed across all methods; each answer is scored independently using 

the same prompt template to avoid any ordering bias. The model is 

used as-is without fine-tuning on the target datasets, so its calibration 

reflects that of the original pre-trained model. While Meta-Llama-3.1-

8B may include some instruction tuning, we treat it as a standard 

language model without explicit alignment or additional calibration. 

Datasets 

We evaluate on four multiple-choice QA benchmarks: 

• ARC-Easy and ARC-Challenge: These are subsets of the 

AI2 Reasoning Challenge (ARC) dataset of grade-school 

science questions [11]. Each question has four answer 

options. ARC-Easy contains questions answerable by 

retrieval of a single fact, whereas ARC-Challenge contains 

harder questions requiring reasoning or combining facts. We 

use the official test sets: 2,376 questions in ARC-Easy and 

1,172 in ARC-Challenge. 

• BoolQ: A yes/no QA dataset with 3,270 questions, each with 

a relevant passage. We convert it to a binary-choice format 

(options” Yes” and” No”). This task has only two options, 

which are single-word answers [12]. 

• HellaSwag: A commonsense reasoning dataset of 10,042 

instances. Each instance provides a brief scenario and four 

possible continuations; the task is to choose the most 

plausible continuation. HellaSwag is known for adversarial 

wrong answers that are superficially plausible and often 

longer or more detailed than the correct answer [13]. 

These datasets cover a range of domains (science exams, open-

domain web passages, video descriptions) and answer lengths (BoolQ 

answers are very short. HellaSwag answers are full sentences). This 

diversity lets us examine how length normalization behaves in 

different scenarios. 

Procedure: For each question in each dataset, we obtain LLi for 

each answer option by prompting the model and summing token log-

probabilities. We then compute the predicted answer and confidence 

under each of the three methods (LL, NormLL, Softmax) described 

in the Methodology. Accuracy is computed by comparing the 

predicted answer to the ground truth. For confidence calibration, we 

gather all predictions and their confidences to compute ECE (using 

10 confidence bins, a common choice following [4]. We also 

calculate ECE per dataset. 

We perform 1000-sample bootstrap resampling on each dataset to 

compute 95% confidence intervals for accuracy and ECE under each 

method. This involves sampling questions with replacement and 

recalculating metrics, which helps determine if differences observed 

are likely due to chance or represent real performance gaps. 

Evaluation Metrics: Our primary metrics are accuracy and ECE 

as defined above. Additionally, we record auxiliary statistics such as 

the average confidence of correct vs. incorrect predictions to assess if 

the model tends to be more or less confident on its mistakes. We also 

examine cases where NormLL and LL disagree on which option is 

best, to understand the nature of those questions (e.g., are the answers 

of different lengths?). 
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Results 

We first present overall accuracy and calibration results for each 

method on each dataset, then delve into analysis of the differences 

(Table 1). 

Dataset Method 

Accuracy 

(%) 

∆ 

Acc. 

ECE 

(%) 

∆ 

ECE 

ARC-Easy 

Log-
Likelihood 69.36 – 1.86 – 

Norm Log-

Likelihood 53.7 -15.66 15.05 13.19 

Softmax 
(Prob) 69.36 0 1.86 0 

ARC-

Challenge 

Log-

Likelihood 54.44 – 9.92 – 

Norm Log-
Likelihood 46.76 -7.68 14.23 4.31 

Softmax 

(Prob) 54.44 0 9.92 0 

BoolQ 

Log-
Likelihood 54.83 – 4.57 – 

Norm Log-

Likelihood 54.83 0 4.57 0 

Softmax 
(Prob) 54.83 0 4.57 0 

HellaSwag 

Log-

Likelihood 28.92 – 36.99 – 

Norm Log-
Likelihood 27.04 -1.88 4.35 -32.64 

Softmax 

(Prob) 28.92 0 36.99 0 

Table 1: Accuracy and Expected Calibration Error (ECE) of a 

large language model on four MCQA datasets, using different 

confidence scoring methods. Bold values indicate the best result for a 

given dataset. ∆ columns reflect differences in accuracy and ECE 

relative to the Log-Likelihood baseline. 

Table 1 summarizes the accuracy and ECE for each dataset-

method combination. The softmax and raw log-likelihood methods 

have identical accuracy in all cases, as expected (since they select the 

same answer). NormLL sometimes chooses a different answer, 

leading to differences in accuracy: 

• On ARC-Easy and ARC-Challenge, NormLL substantially 

underperforms raw LL/softmax. Accuracy drops by about 

15.7 points on ARC-Easy (from 69.36% to 53.70%) and by 

7.7 points on ARC-Challenge (54.44% to 46.76%). These 

drops are statistically significant (95% confidence intervals 

do not overlap). 

• On BoolQ, all methods yield the same accuracy (54.8%). 

This implies that, for this dataset, for every question, the 

answer with the highest total likelihood is also the one with 

the highest average per-token likelihood. Given BoolQ’s 

yes/no answers are one token each, length normalization has 

no effect. 

• On HellaSwag, NormLL accuracy is slightly lower than raw 

(27.04% vs 28.92%), a drop of 1.9 points. While small in 

absolute terms, this difference reflects a few changed 

predictions. 

In terms of calibration: 

• For ARC-Easy, the model was very well-calibrated under 

softmax/LL (ECE ≈ 1.86%). NormLL yields a much higher 

ECE (15.05%), indicating that normalizing by length 

severely mis calibrated confidence on ARC-Easy. With 

NormLL the model became underconfident on many easy 

questions it answered correctly (assigning lower probability 

than it should have). 

• For ARC-Challenge, softmax ECE is 9.92% and NormLL 

increases it to 14.23%. NormLL also worsened calibration 

on this dataset, though the effect is smaller than on ARC-

Easy. 

• For BoolQ, ECE is 4.57% for all methods (since predictions 

and confidences were identical). 

• For HellaSwag, we see a dramatic improvement in ECE with 

NormLL: From a very high 36.99% under softmax to only 

4.35% with NormLL. The raw model was extremely 

overconfident on HellaSwag (often confidently choosing 

wrong answers), but normalizing the log-probs by length 

reduced this overconfidence to near zero. We analyze this 

case below. 

Bootstrap confidence intervals confirm these differences. On 

ARC-Easy, the raw/softmax accuracy 95% CI (around 67.5–71.1%) 

vs NormLL (51.7–55.8%) show no overlap. 

ARC-Challenge raw (51.5–57.3%) vs NormLL (43.8–49.5%) 

also do not overlap. On HellaSwag, the accuracy CIs for raw vs 

NormLL overlap (roughly 27.8–30.0 vs 26.2–28.7), indicating the 

accuracy difference there might not be statistically robust. However, 

the ECE improvements are clear: HellaSwag NormLL ECE 4.35% 

(CI ≈3.6–5.1) vs raw 36.99% (CI ≈35.0–38.0). Likewise, ARC-Easy 

NormLL ECE 15.05% vs raw 1.86% (no overlap). 

Analysis of length normalization effects 

The above results beg the question: Why does length 

normalization help so much on HellaSwag but hurt on ARC? We 

examine these datasets and the model’s behavior: 

HellaSwag: Overconfidence on short distractors: In 

HellaSwag, the model’s raw softmax confidence for its chosen 

answer was frequently very high (e.g., > 90%) even when it was 

wrong. Often, the wrong answer the model preferred was notice- ably 

shorter or simpler than the correct answer. By using NormLL, the 

longer correct answer’s average token probability can compete more 

fairly with the short answer. In essence, NormLL prevented the model 

from being too biased toward short, high- probability sequences, thus 

reducing confidence on those wrong answers. This yielded a near 

elimination of calibration error. Notably, NormLL didn’t drastically 

increase accuracy on HellaSwag; it mainly made the model less sure 

about its (often wrong) choices, aligning confidence with its low 

accuracy (29%). This is reflected in ECE dropping to 4%, meaning 

when the model says “I’m 30% confident”, it is correct 30% of the 

time, which was not the case with raw scoring. 

ARC: Correct answers are short: In ARC, the correct answers 

(especially in ARC-Easy) are often shorter or simpler than the 

distractors. Many easy science questions have single-word correct 

answers (e.g., “photosynthesis”), whereas incorrect options might be 

longer phrases or sentences. The model with raw scoring was already 

doing well at picking the correct short answer and was relatively well-

calibrated. Applying NormLL penalized those correct short answers 

(removing their length advantage) and in some cases caused a longer, 

wrong option to score higher. This explains the accuracy drop. In 

terms of calibration, NormLL made the model hesitate more on 
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questions it actually knew, increasing ECE by introducing under 

confidence. Essentially, length normalization undermined a useful 

heuristic that aided model performance on ARC-Easy (favoring 

concise correct answers) that the raw scoring exploited. For ARC-

Challenge, the effect was similar but less extreme. Correct answers 

did not consistently have a length advantage, so NormLL misled the 

model on some questions without a clear calibration benefit (ECE 

slightly worsened). 

When Do NormLL and Raw Disagree? We inspected cases 

where NormLL picked a different answer than raw (and softmax). On 

ARC-Easy/Challenge, these tended to be instances where: The raw 

top answer was shorter than the NormLL top answer. If the raw top 

answer was correct and NormLL top was wrong (common on ARC), 

length norm hurt performance. Conversely, a few cases had the raw 

top answer longer and wrong and NormLL switched to a shorter 

correct answer (helping accuracy), but these were rarer. 

On HellaSwag, disagreements often involved the correct answer 

being longer. NormLL sometimes switched to the correct answer if 

raw had picked a shorter wrong one. It also occasionally picked a 

different wrong answer (if that wrong option had higher average 

probability, even though raw had chosen another wrong one by total 

probability). The net effect was a mix of wins and losses for NormLL 

in accuracy, but a consistent reduction in confidence for wrong 

answers, improving calibration. 

Discussion 

Our findings demonstrate that simple log-likelihood, as a direct 

output of a language model, carries valuable information about model 

confidence, but its proper use is nuanced. The raw log-likelihood 

(when transformed into a probability via softmax over options) gave 

us a baseline calibration of the model. In some cases (ARC-Easy), 

this baseline was surprisingly good (ECE ≈ 2%). In others 

(HellaSwag), the baseline was poor, showing the model was grossly 

overconfident. 

Length normalization is a double-edged sword. It addresses one 

specific issue (length bias) which clearly mattered in HellaSwag, 

aligning confidence better. But it can interfere with the model’s 

natural scoring in cases where length correlates with correctness (like 

concise answers in science questions). This suggests that one-size-

fits-all normalization might not be optimal. An adaptive approach 

could be needed: e.g., apply length normalization only when answer 

lengths vary greatly or when the model is exploiting superficial cues. 

Our results also resonate with prior work that introduced more 

sophisticated calibration techniques. The ALC method by Kumar, et 

al., for example, can be seen as an extension that not only deals with 

length but also other biases [2]. Our simpler analysis confirms that 

even the most basic bias (length) can swing calibration and accuracy 

significantly. 

Notably, raw log-likelihood and softmax probability yielded 

identical ECE in our evaluations (except when NormLL changed the 

predictions). This is because we computed ECE after converting raw 

LL to probabilities via softmax, so raw LL and softmax are effectively 

the same confidence measure in practice. If one were to treat the raw 

log-likelihood values directly as a confidence score (without 

conversion to a probability), additional calibration or mapping would 

be needed. 

We used Meta-Llama-3.1-8B, a large instruction-tuned decoder-

only language model. Larger models can be better calibrated in some 

settings than smaller ones, but instruction- tuned models may become 

less calibrated [10]. If our model was an aligned one, the observed 

overconfidence on HellaSwag might be partly due to alignment. For 

a base model or different architecture, the numbers might differ, 

though the qualitative effects of length likely remain. 

Finally, while we focused on multiple-choice format (which 

confines the probability space to given options), the ultimate goal is 

calibrating open-ended generation. In open-ended settings, the space 

of possible answers is vast and length normalization or softmax over 

options isn’t directly applicable. Recent works like have started 

training models to produce calibrated confidence statements for their 

out- puts [8]. Our study provides insight into the simplest form of 

model-internal confidence for a constrained task, as a stepping stone 

toward understanding confidence in free-form generation. 

Conclusion 

We presented a comprehensive evaluation of using log-likelihood 

as a confidence signal for large language models on multiple-choice 

QA tasks. By comparing raw log-likelihood, length-normalized log-

likelihood and the standard softmax-based confidence, we showed 

that the choice of scoring method can significantly impact both 

prediction accuracy and confidence calibration. Raw log-likelihood 

(when appropriately converted to a probability) generally mirrors the 

softmax method, yielding good performance on tasks where the 

model is already calibrated. Length normalization can either greatly 

improve calibration (as seen on HellaSwag) or hurt performance (as 

on ARC), depending on dataset characteristics. 

No single confidence scoring approach is universally best for all 

scenarios. Practitioners should be aware of potential length biases in 

model scoring and consider calibration metrics like ECE when 

deciding how to interpret model confidences. In cases where 

calibration is critical, a slight loss in accuracy from normalization 

might be acceptable to obtain reliable probabilities. Conversely, if 

accuracy is paramount and the model is known to be well-calibrated 

or if correct answers tend to be short, raw scoring may be preferred. 

Future work could explore dynamic strategies that detect when to 

apply length normalization or other calibration adjustments on a per-

question or per-dataset basis. Extending these confidence measures to 

open-ended generation is another avenue, as quantifying uncertainty 

in free-form outputs remains challenging. Ultimately, improving 

LLMs’ ability to know when they might be wrong is key to building 

trustworthy AI systems. 

Limitations 

This study has several limitations. First, we evaluated only a 

single instruction-tuned language model (Meta-Llama-3.1-8B). 

While representative of modern LLMs, our findings may not 

generalize to other architectures, model sizes, or alignment levels. For 

example, base models or task-specific fine-tuned models may exhibit 

different confidence behaviors or length biases. 

Second, we focused exclusively on multiple-choice formats, 

which allow for clear application of log-likelihood and softmax-based 

confidence. In open-ended or generative QA, these methods are less 

applicable and adapting them requires further methodological 

development. 
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Third, our analysis primarily used Expected Calibration Error 

(ECE) to assess confidence alignment. While widely used, ECE 

overlooks nuances such as confidence distributions among incorrect 

predictions or overconfidence in specific answer types. Alternative 

metrics (e.g., Brier score) or post-hoc techniques like temperature 

scaling were not explored but could improve calibration. 

Additionally, we treated the model as a black box and did not 

probe internal representations or attention patterns. More advanced 

methods—such as inspecting hidden states or using verifier models—

might yield richer confidence signals. 

We also did not systematically quantify dataset-level properties 

such as answer length distributions, distractor quality, or prompt 

format sensitivity. While our qualitative analysis suggested these 

factors play a role (e.g., in ARC or HellaSwag), a more rigorous 

characterization could strengthen these conclusions. 

Finally, prompt design was held constant, but its interaction with 

confidence and calibration was not studied. Subtle changes in 

phrasing, formatting, or option ordering may influence both 

predictions and confidence scores. 

Despite these limitations, our study provides actionable empirical 

insights into confidence estimation in LLMs and underscores the need 

for dataset-aware calibration strategies when deploying these models 

in QA settings. 
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